(root)/
xz-5.4.5/
src/
liblzma/
lzma/
lzma_encoder.c
       1  ///////////////////////////////////////////////////////////////////////////////
       2  //
       3  /// \file       lzma_encoder.c
       4  /// \brief      LZMA encoder
       5  ///
       6  //  Authors:    Igor Pavlov
       7  //              Lasse Collin
       8  //
       9  //  This file has been put into the public domain.
      10  //  You can do whatever you want with this file.
      11  //
      12  ///////////////////////////////////////////////////////////////////////////////
      13  
      14  #include "lzma2_encoder.h"
      15  #include "lzma_encoder_private.h"
      16  #include "fastpos.h"
      17  
      18  
      19  /////////////
      20  // Literal //
      21  /////////////
      22  
      23  static inline void
      24  literal_matched(lzma_range_encoder *rc, probability *subcoder,
      25  		uint32_t match_byte, uint32_t symbol)
      26  {
      27  	uint32_t offset = 0x100;
      28  	symbol += UINT32_C(1) << 8;
      29  
      30  	do {
      31  		match_byte <<= 1;
      32  		const uint32_t match_bit = match_byte & offset;
      33  		const uint32_t subcoder_index
      34  				= offset + match_bit + (symbol >> 8);
      35  		const uint32_t bit = (symbol >> 7) & 1;
      36  		rc_bit(rc, &subcoder[subcoder_index], bit);
      37  
      38  		symbol <<= 1;
      39  		offset &= ~(match_byte ^ symbol);
      40  
      41  	} while (symbol < (UINT32_C(1) << 16));
      42  }
      43  
      44  
      45  static inline void
      46  literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
      47  {
      48  	// Locate the literal byte to be encoded and the subcoder.
      49  	const uint8_t cur_byte = mf->buffer[
      50  			mf->read_pos - mf->read_ahead];
      51  	probability *subcoder = literal_subcoder(coder->literal,
      52  			coder->literal_context_bits, coder->literal_pos_mask,
      53  			position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
      54  
      55  	if (is_literal_state(coder->state)) {
      56  		// Previous LZMA-symbol was a literal. Encode a normal
      57  		// literal without a match byte.
      58  		rc_bittree(&coder->rc, subcoder, 8, cur_byte);
      59  	} else {
      60  		// Previous LZMA-symbol was a match. Use the last byte of
      61  		// the match as a "match byte". That is, compare the bits
      62  		// of the current literal and the match byte.
      63  		const uint8_t match_byte = mf->buffer[
      64  				mf->read_pos - coder->reps[0] - 1
      65  				- mf->read_ahead];
      66  		literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
      67  	}
      68  
      69  	update_literal(coder->state);
      70  }
      71  
      72  
      73  //////////////////
      74  // Match length //
      75  //////////////////
      76  
      77  static void
      78  length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
      79  {
      80  	const uint32_t table_size = lc->table_size;
      81  	lc->counters[pos_state] = table_size;
      82  
      83  	const uint32_t a0 = rc_bit_0_price(lc->choice);
      84  	const uint32_t a1 = rc_bit_1_price(lc->choice);
      85  	const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
      86  	const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
      87  	uint32_t *const prices = lc->prices[pos_state];
      88  
      89  	uint32_t i;
      90  	for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
      91  		prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
      92  				LEN_LOW_BITS, i);
      93  
      94  	for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
      95  		prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
      96  				LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
      97  
      98  	for (; i < table_size; ++i)
      99  		prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
     100  				i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
     101  
     102  	return;
     103  }
     104  
     105  
     106  static inline void
     107  length(lzma_range_encoder *rc, lzma_length_encoder *lc,
     108  		const uint32_t pos_state, uint32_t len, const bool fast_mode)
     109  {
     110  	assert(len <= MATCH_LEN_MAX);
     111  	len -= MATCH_LEN_MIN;
     112  
     113  	if (len < LEN_LOW_SYMBOLS) {
     114  		rc_bit(rc, &lc->choice, 0);
     115  		rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
     116  	} else {
     117  		rc_bit(rc, &lc->choice, 1);
     118  		len -= LEN_LOW_SYMBOLS;
     119  
     120  		if (len < LEN_MID_SYMBOLS) {
     121  			rc_bit(rc, &lc->choice2, 0);
     122  			rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
     123  		} else {
     124  			rc_bit(rc, &lc->choice2, 1);
     125  			len -= LEN_MID_SYMBOLS;
     126  			rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
     127  		}
     128  	}
     129  
     130  	// Only getoptimum uses the prices so don't update the table when
     131  	// in fast mode.
     132  	if (!fast_mode)
     133  		if (--lc->counters[pos_state] == 0)
     134  			length_update_prices(lc, pos_state);
     135  }
     136  
     137  
     138  ///////////
     139  // Match //
     140  ///////////
     141  
     142  static inline void
     143  match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
     144  		const uint32_t distance, const uint32_t len)
     145  {
     146  	update_match(coder->state);
     147  
     148  	length(&coder->rc, &coder->match_len_encoder, pos_state, len,
     149  			coder->fast_mode);
     150  
     151  	const uint32_t dist_slot = get_dist_slot(distance);
     152  	const uint32_t dist_state = get_dist_state(len);
     153  	rc_bittree(&coder->rc, coder->dist_slot[dist_state],
     154  			DIST_SLOT_BITS, dist_slot);
     155  
     156  	if (dist_slot >= DIST_MODEL_START) {
     157  		const uint32_t footer_bits = (dist_slot >> 1) - 1;
     158  		const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
     159  		const uint32_t dist_reduced = distance - base;
     160  
     161  		if (dist_slot < DIST_MODEL_END) {
     162  			// Careful here: base - dist_slot - 1 can be -1, but
     163  			// rc_bittree_reverse starts at probs[1], not probs[0].
     164  			rc_bittree_reverse(&coder->rc,
     165  				coder->dist_special + base - dist_slot - 1,
     166  				footer_bits, dist_reduced);
     167  		} else {
     168  			rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
     169  					footer_bits - ALIGN_BITS);
     170  			rc_bittree_reverse(
     171  					&coder->rc, coder->dist_align,
     172  					ALIGN_BITS, dist_reduced & ALIGN_MASK);
     173  			++coder->align_price_count;
     174  		}
     175  	}
     176  
     177  	coder->reps[3] = coder->reps[2];
     178  	coder->reps[2] = coder->reps[1];
     179  	coder->reps[1] = coder->reps[0];
     180  	coder->reps[0] = distance;
     181  	++coder->match_price_count;
     182  }
     183  
     184  
     185  ////////////////////
     186  // Repeated match //
     187  ////////////////////
     188  
     189  static inline void
     190  rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
     191  		const uint32_t rep, const uint32_t len)
     192  {
     193  	if (rep == 0) {
     194  		rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
     195  		rc_bit(&coder->rc,
     196  				&coder->is_rep0_long[coder->state][pos_state],
     197  				len != 1);
     198  	} else {
     199  		const uint32_t distance = coder->reps[rep];
     200  		rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
     201  
     202  		if (rep == 1) {
     203  			rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
     204  		} else {
     205  			rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
     206  			rc_bit(&coder->rc, &coder->is_rep2[coder->state],
     207  					rep - 2);
     208  
     209  			if (rep == 3)
     210  				coder->reps[3] = coder->reps[2];
     211  
     212  			coder->reps[2] = coder->reps[1];
     213  		}
     214  
     215  		coder->reps[1] = coder->reps[0];
     216  		coder->reps[0] = distance;
     217  	}
     218  
     219  	if (len == 1) {
     220  		update_short_rep(coder->state);
     221  	} else {
     222  		length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
     223  				coder->fast_mode);
     224  		update_long_rep(coder->state);
     225  	}
     226  }
     227  
     228  
     229  //////////
     230  // Main //
     231  //////////
     232  
     233  static void
     234  encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
     235  		uint32_t back, uint32_t len, uint32_t position)
     236  {
     237  	const uint32_t pos_state = position & coder->pos_mask;
     238  
     239  	if (back == UINT32_MAX) {
     240  		// Literal i.e. eight-bit byte
     241  		assert(len == 1);
     242  		rc_bit(&coder->rc,
     243  				&coder->is_match[coder->state][pos_state], 0);
     244  		literal(coder, mf, position);
     245  	} else {
     246  		// Some type of match
     247  		rc_bit(&coder->rc,
     248  			&coder->is_match[coder->state][pos_state], 1);
     249  
     250  		if (back < REPS) {
     251  			// It's a repeated match i.e. the same distance
     252  			// has been used earlier.
     253  			rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
     254  			rep_match(coder, pos_state, back, len);
     255  		} else {
     256  			// Normal match
     257  			rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
     258  			match(coder, pos_state, back - REPS, len);
     259  		}
     260  	}
     261  
     262  	assert(mf->read_ahead >= len);
     263  	mf->read_ahead -= len;
     264  }
     265  
     266  
     267  static bool
     268  encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
     269  {
     270  	assert(mf_position(mf) == 0);
     271  	assert(coder->uncomp_size == 0);
     272  
     273  	if (mf->read_pos == mf->read_limit) {
     274  		if (mf->action == LZMA_RUN)
     275  			return false; // We cannot do anything.
     276  
     277  		// We are finishing (we cannot get here when flushing).
     278  		assert(mf->write_pos == mf->read_pos);
     279  		assert(mf->action == LZMA_FINISH);
     280  	} else {
     281  		// Do the actual initialization. The first LZMA symbol must
     282  		// always be a literal.
     283  		mf_skip(mf, 1);
     284  		mf->read_ahead = 0;
     285  		rc_bit(&coder->rc, &coder->is_match[0][0], 0);
     286  		rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]);
     287  		++coder->uncomp_size;
     288  	}
     289  
     290  	// Initialization is done (except if empty file).
     291  	coder->is_initialized = true;
     292  
     293  	return true;
     294  }
     295  
     296  
     297  static void
     298  encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
     299  {
     300  	const uint32_t pos_state = position & coder->pos_mask;
     301  	rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
     302  	rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
     303  	match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
     304  }
     305  
     306  
     307  /// Number of bytes that a single encoding loop in lzma_lzma_encode() can
     308  /// consume from the dictionary. This limit comes from lzma_lzma_optimum()
     309  /// and may need to be updated if that function is significantly modified.
     310  #define LOOP_INPUT_MAX (OPTS + 1)
     311  
     312  
     313  extern lzma_ret
     314  lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
     315  		uint8_t *restrict out, size_t *restrict out_pos,
     316  		size_t out_size, uint32_t limit)
     317  {
     318  	// Initialize the stream if no data has been encoded yet.
     319  	if (!coder->is_initialized && !encode_init(coder, mf))
     320  		return LZMA_OK;
     321  
     322  	// Encode pending output bytes from the range encoder.
     323  	// At the start of the stream, encode_init() encodes one literal.
     324  	// Later there can be pending output only with LZMA1 because LZMA2
     325  	// ensures that there is always enough output space. Thus when using
     326  	// LZMA2, rc_encode() calls in this function will always return false.
     327  	if (rc_encode(&coder->rc, out, out_pos, out_size)) {
     328  		// We don't get here with LZMA2.
     329  		assert(limit == UINT32_MAX);
     330  		return LZMA_OK;
     331  	}
     332  
     333  	// If the range encoder was flushed in an earlier call to this
     334  	// function but there wasn't enough output buffer space, those
     335  	// bytes would have now been encoded by the above rc_encode() call
     336  	// and the stream has now been finished. This can only happen with
     337  	// LZMA1 as LZMA2 always provides enough output buffer space.
     338  	if (coder->is_flushed) {
     339  		assert(limit == UINT32_MAX);
     340  		return LZMA_STREAM_END;
     341  	}
     342  
     343  	while (true) {
     344  		// With LZMA2 we need to take care that compressed size of
     345  		// a chunk doesn't get too big.
     346  		// FIXME? Check if this could be improved.
     347  		if (limit != UINT32_MAX
     348  				&& (mf->read_pos - mf->read_ahead >= limit
     349  					|| *out_pos + rc_pending(&coder->rc)
     350  						>= LZMA2_CHUNK_MAX
     351  							- LOOP_INPUT_MAX))
     352  			break;
     353  
     354  		// Check that there is some input to process.
     355  		if (mf->read_pos >= mf->read_limit) {
     356  			if (mf->action == LZMA_RUN)
     357  				return LZMA_OK;
     358  
     359  			if (mf->read_ahead == 0)
     360  				break;
     361  		}
     362  
     363  		// Get optimal match (repeat position and length).
     364  		// Value ranges for pos:
     365  		//   - [0, REPS): repeated match
     366  		//   - [REPS, UINT32_MAX):
     367  		//     match at (pos - REPS)
     368  		//   - UINT32_MAX: not a match but a literal
     369  		// Value ranges for len:
     370  		//   - [MATCH_LEN_MIN, MATCH_LEN_MAX]
     371  		uint32_t len;
     372  		uint32_t back;
     373  
     374  		if (coder->fast_mode)
     375  			lzma_lzma_optimum_fast(coder, mf, &back, &len);
     376  		else
     377  			lzma_lzma_optimum_normal(coder, mf, &back, &len,
     378  					(uint32_t)(coder->uncomp_size));
     379  
     380  		encode_symbol(coder, mf, back, len,
     381  				(uint32_t)(coder->uncomp_size));
     382  
     383  		// If output size limiting is active (out_limit != 0), check
     384  		// if encoding this LZMA symbol would make the output size
     385  		// exceed the specified limit.
     386  		if (coder->out_limit != 0 && rc_encode_dummy(
     387  				&coder->rc, coder->out_limit)) {
     388  			// The most recent LZMA symbol would make the output
     389  			// too big. Throw it away.
     390  			rc_forget(&coder->rc);
     391  
     392  			// FIXME: Tell the LZ layer to not read more input as
     393  			// it would be waste of time. This doesn't matter if
     394  			// output-size-limited encoding is done with a single
     395  			// call though.
     396  
     397  			break;
     398  		}
     399  
     400  		// This symbol will be encoded so update the uncompressed size.
     401  		coder->uncomp_size += len;
     402  
     403  		// Encode the LZMA symbol.
     404  		if (rc_encode(&coder->rc, out, out_pos, out_size)) {
     405  			// Once again, this can only happen with LZMA1.
     406  			assert(limit == UINT32_MAX);
     407  			return LZMA_OK;
     408  		}
     409  	}
     410  
     411  	// Make the uncompressed size available to the application.
     412  	if (coder->uncomp_size_ptr != NULL)
     413  		*coder->uncomp_size_ptr = coder->uncomp_size;
     414  
     415  	// LZMA2 doesn't use EOPM at LZMA level.
     416  	//
     417  	// Plain LZMA streams without EOPM aren't supported except when
     418  	// output size limiting is enabled.
     419  	if (coder->use_eopm)
     420  		encode_eopm(coder, (uint32_t)(coder->uncomp_size));
     421  
     422  	// Flush the remaining bytes from the range encoder.
     423  	rc_flush(&coder->rc);
     424  
     425  	// Copy the remaining bytes to the output buffer. If there
     426  	// isn't enough output space, we will copy out the remaining
     427  	// bytes on the next call to this function.
     428  	if (rc_encode(&coder->rc, out, out_pos, out_size)) {
     429  		// This cannot happen with LZMA2.
     430  		assert(limit == UINT32_MAX);
     431  
     432  		coder->is_flushed = true;
     433  		return LZMA_OK;
     434  	}
     435  
     436  	return LZMA_STREAM_END;
     437  }
     438  
     439  
     440  static lzma_ret
     441  lzma_encode(void *coder, lzma_mf *restrict mf,
     442  		uint8_t *restrict out, size_t *restrict out_pos,
     443  		size_t out_size)
     444  {
     445  	// Plain LZMA has no support for sync-flushing.
     446  	if (unlikely(mf->action == LZMA_SYNC_FLUSH))
     447  		return LZMA_OPTIONS_ERROR;
     448  
     449  	return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
     450  }
     451  
     452  
     453  static lzma_ret
     454  lzma_lzma_set_out_limit(
     455  		void *coder_ptr, uint64_t *uncomp_size, uint64_t out_limit)
     456  {
     457  	// Minimum output size is 5 bytes but that cannot hold any output
     458  	// so we use 6 bytes.
     459  	if (out_limit < 6)
     460  		return LZMA_BUF_ERROR;
     461  
     462  	lzma_lzma1_encoder *coder = coder_ptr;
     463  	coder->out_limit = out_limit;
     464  	coder->uncomp_size_ptr = uncomp_size;
     465  	coder->use_eopm = false;
     466  	return LZMA_OK;
     467  }
     468  
     469  
     470  ////////////////////
     471  // Initialization //
     472  ////////////////////
     473  
     474  static bool
     475  is_options_valid(const lzma_options_lzma *options)
     476  {
     477  	// Validate some of the options. LZ encoder validates nice_len too
     478  	// but we need a valid value here earlier.
     479  	return is_lclppb_valid(options)
     480  			&& options->nice_len >= MATCH_LEN_MIN
     481  			&& options->nice_len <= MATCH_LEN_MAX
     482  			&& (options->mode == LZMA_MODE_FAST
     483  				|| options->mode == LZMA_MODE_NORMAL);
     484  }
     485  
     486  
     487  static void
     488  set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
     489  {
     490  	// LZ encoder initialization does the validation for these so we
     491  	// don't need to validate here.
     492  	lz_options->before_size = OPTS;
     493  	lz_options->dict_size = options->dict_size;
     494  	lz_options->after_size = LOOP_INPUT_MAX;
     495  	lz_options->match_len_max = MATCH_LEN_MAX;
     496  	lz_options->nice_len = my_max(mf_get_hash_bytes(options->mf),
     497  				options->nice_len);
     498  	lz_options->match_finder = options->mf;
     499  	lz_options->depth = options->depth;
     500  	lz_options->preset_dict = options->preset_dict;
     501  	lz_options->preset_dict_size = options->preset_dict_size;
     502  	return;
     503  }
     504  
     505  
     506  static void
     507  length_encoder_reset(lzma_length_encoder *lencoder,
     508  		const uint32_t num_pos_states, const bool fast_mode)
     509  {
     510  	bit_reset(lencoder->choice);
     511  	bit_reset(lencoder->choice2);
     512  
     513  	for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
     514  		bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
     515  		bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
     516  	}
     517  
     518  	bittree_reset(lencoder->high, LEN_HIGH_BITS);
     519  
     520  	if (!fast_mode)
     521  		for (uint32_t pos_state = 0; pos_state < num_pos_states;
     522  				++pos_state)
     523  			length_update_prices(lencoder, pos_state);
     524  
     525  	return;
     526  }
     527  
     528  
     529  extern lzma_ret
     530  lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
     531  		const lzma_options_lzma *options)
     532  {
     533  	if (!is_options_valid(options))
     534  		return LZMA_OPTIONS_ERROR;
     535  
     536  	coder->pos_mask = (1U << options->pb) - 1;
     537  	coder->literal_context_bits = options->lc;
     538  	coder->literal_pos_mask = (1U << options->lp) - 1;
     539  
     540  	// Range coder
     541  	rc_reset(&coder->rc);
     542  
     543  	// State
     544  	coder->state = STATE_LIT_LIT;
     545  	for (size_t i = 0; i < REPS; ++i)
     546  		coder->reps[i] = 0;
     547  
     548  	literal_init(coder->literal, options->lc, options->lp);
     549  
     550  	// Bit encoders
     551  	for (size_t i = 0; i < STATES; ++i) {
     552  		for (size_t j = 0; j <= coder->pos_mask; ++j) {
     553  			bit_reset(coder->is_match[i][j]);
     554  			bit_reset(coder->is_rep0_long[i][j]);
     555  		}
     556  
     557  		bit_reset(coder->is_rep[i]);
     558  		bit_reset(coder->is_rep0[i]);
     559  		bit_reset(coder->is_rep1[i]);
     560  		bit_reset(coder->is_rep2[i]);
     561  	}
     562  
     563  	for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
     564  		bit_reset(coder->dist_special[i]);
     565  
     566  	// Bit tree encoders
     567  	for (size_t i = 0; i < DIST_STATES; ++i)
     568  		bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
     569  
     570  	bittree_reset(coder->dist_align, ALIGN_BITS);
     571  
     572  	// Length encoders
     573  	length_encoder_reset(&coder->match_len_encoder,
     574  			1U << options->pb, coder->fast_mode);
     575  
     576  	length_encoder_reset(&coder->rep_len_encoder,
     577  			1U << options->pb, coder->fast_mode);
     578  
     579  	// Price counts are incremented every time appropriate probabilities
     580  	// are changed. price counts are set to zero when the price tables
     581  	// are updated, which is done when the appropriate price counts have
     582  	// big enough value, and lzma_mf.read_ahead == 0 which happens at
     583  	// least every OPTS (a few thousand) possible price count increments.
     584  	//
     585  	// By resetting price counts to UINT32_MAX / 2, we make sure that the
     586  	// price tables will be initialized before they will be used (since
     587  	// the value is definitely big enough), and that it is OK to increment
     588  	// price counts without risk of integer overflow (since UINT32_MAX / 2
     589  	// is small enough). The current code doesn't increment price counts
     590  	// before initializing price tables, but it maybe done in future if
     591  	// we add support for saving the state between LZMA2 chunks.
     592  	coder->match_price_count = UINT32_MAX / 2;
     593  	coder->align_price_count = UINT32_MAX / 2;
     594  
     595  	coder->opts_end_index = 0;
     596  	coder->opts_current_index = 0;
     597  
     598  	return LZMA_OK;
     599  }
     600  
     601  
     602  extern lzma_ret
     603  lzma_lzma_encoder_create(void **coder_ptr, const lzma_allocator *allocator,
     604  		lzma_vli id, const lzma_options_lzma *options,
     605  		lzma_lz_options *lz_options)
     606  {
     607  	assert(id == LZMA_FILTER_LZMA1 || id == LZMA_FILTER_LZMA1EXT
     608  			|| id == LZMA_FILTER_LZMA2);
     609  
     610  	// Allocate lzma_lzma1_encoder if it wasn't already allocated.
     611  	if (*coder_ptr == NULL) {
     612  		*coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
     613  		if (*coder_ptr == NULL)
     614  			return LZMA_MEM_ERROR;
     615  	}
     616  
     617  	lzma_lzma1_encoder *coder = *coder_ptr;
     618  
     619  	// Set compression mode. Note that we haven't validated the options
     620  	// yet. Invalid options will get rejected by lzma_lzma_encoder_reset()
     621  	// call at the end of this function.
     622  	switch (options->mode) {
     623  		case LZMA_MODE_FAST:
     624  			coder->fast_mode = true;
     625  			break;
     626  
     627  		case LZMA_MODE_NORMAL: {
     628  			coder->fast_mode = false;
     629  
     630  			// Set dist_table_size.
     631  			// Round the dictionary size up to next 2^n.
     632  			//
     633  			// Currently the maximum encoder dictionary size
     634  			// is 1.5 GiB due to lz_encoder.c and here we need
     635  			// to be below 2 GiB to make the rounded up value
     636  			// fit in an uint32_t and avoid an infinite while-loop
     637  			// (and undefined behavior due to a too large shift).
     638  			// So do the same check as in LZ encoder,
     639  			// limiting to 1.5 GiB.
     640  			if (options->dict_size > (UINT32_C(1) << 30)
     641  					+ (UINT32_C(1) << 29))
     642  				return LZMA_OPTIONS_ERROR;
     643  
     644  			uint32_t log_size = 0;
     645  			while ((UINT32_C(1) << log_size) < options->dict_size)
     646  				++log_size;
     647  
     648  			coder->dist_table_size = log_size * 2;
     649  
     650  			// Length encoders' price table size
     651  			const uint32_t nice_len = my_max(
     652  					mf_get_hash_bytes(options->mf),
     653  					options->nice_len);
     654  
     655  			coder->match_len_encoder.table_size
     656  					= nice_len + 1 - MATCH_LEN_MIN;
     657  			coder->rep_len_encoder.table_size
     658  					= nice_len + 1 - MATCH_LEN_MIN;
     659  			break;
     660  		}
     661  
     662  		default:
     663  			return LZMA_OPTIONS_ERROR;
     664  	}
     665  
     666  	// We don't need to write the first byte as literal if there is
     667  	// a non-empty preset dictionary. encode_init() wouldn't even work
     668  	// if there is a non-empty preset dictionary, because encode_init()
     669  	// assumes that position is zero and previous byte is also zero.
     670  	coder->is_initialized = options->preset_dict != NULL
     671  			&& options->preset_dict_size > 0;
     672  	coder->is_flushed = false;
     673  	coder->uncomp_size = 0;
     674  	coder->uncomp_size_ptr = NULL;
     675  
     676  	// Output size limiting is disabled by default.
     677  	coder->out_limit = 0;
     678  
     679  	// Determine if end marker is wanted:
     680  	//   - It is never used with LZMA2.
     681  	//   - It is always used with LZMA_FILTER_LZMA1 (unless
     682  	//     lzma_lzma_set_out_limit() is called later).
     683  	//   - LZMA_FILTER_LZMA1EXT has a flag for it in the options.
     684  	coder->use_eopm = (id == LZMA_FILTER_LZMA1);
     685  	if (id == LZMA_FILTER_LZMA1EXT) {
     686  		// Check if unsupported flags are present.
     687  		if (options->ext_flags & ~LZMA_LZMA1EXT_ALLOW_EOPM)
     688  			return LZMA_OPTIONS_ERROR;
     689  
     690  		coder->use_eopm = (options->ext_flags
     691  				& LZMA_LZMA1EXT_ALLOW_EOPM) != 0;
     692  
     693  		// TODO? As long as there are no filters that change the size
     694  		// of the data, it is enough to look at lzma_stream.total_in
     695  		// after encoding has been finished to know the uncompressed
     696  		// size of the LZMA1 stream. But in the future there could be
     697  		// filters that change the size of the data and then total_in
     698  		// doesn't work as the LZMA1 stream size might be different
     699  		// due to another filter in the chain. The problem is simple
     700  		// to solve: Add another flag to ext_flags and then set
     701  		// coder->uncomp_size_ptr to the address stored in
     702  		// lzma_options_lzma.reserved_ptr2 (or _ptr1).
     703  	}
     704  
     705  	set_lz_options(lz_options, options);
     706  
     707  	return lzma_lzma_encoder_reset(coder, options);
     708  }
     709  
     710  
     711  static lzma_ret
     712  lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
     713  		lzma_vli id, const void *options, lzma_lz_options *lz_options)
     714  {
     715  	lz->code = &lzma_encode;
     716  	lz->set_out_limit = &lzma_lzma_set_out_limit;
     717  	return lzma_lzma_encoder_create(
     718  			&lz->coder, allocator, id, options, lz_options);
     719  }
     720  
     721  
     722  extern lzma_ret
     723  lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
     724  		const lzma_filter_info *filters)
     725  {
     726  	return lzma_lz_encoder_init(
     727  			next, allocator, filters, &lzma_encoder_init);
     728  }
     729  
     730  
     731  extern uint64_t
     732  lzma_lzma_encoder_memusage(const void *options)
     733  {
     734  	if (!is_options_valid(options))
     735  		return UINT64_MAX;
     736  
     737  	lzma_lz_options lz_options;
     738  	set_lz_options(&lz_options, options);
     739  
     740  	const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
     741  	if (lz_memusage == UINT64_MAX)
     742  		return UINT64_MAX;
     743  
     744  	return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
     745  }
     746  
     747  
     748  extern bool
     749  lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
     750  {
     751  	if (!is_lclppb_valid(options))
     752  		return true;
     753  
     754  	*byte = (options->pb * 5 + options->lp) * 9 + options->lc;
     755  	assert(*byte <= (4 * 5 + 4) * 9 + 8);
     756  
     757  	return false;
     758  }
     759  
     760  
     761  #ifdef HAVE_ENCODER_LZMA1
     762  extern lzma_ret
     763  lzma_lzma_props_encode(const void *options, uint8_t *out)
     764  {
     765  	if (options == NULL)
     766  		return LZMA_PROG_ERROR;
     767  
     768  	const lzma_options_lzma *const opt = options;
     769  
     770  	if (lzma_lzma_lclppb_encode(opt, out))
     771  		return LZMA_PROG_ERROR;
     772  
     773  	write32le(out + 1, opt->dict_size);
     774  
     775  	return LZMA_OK;
     776  }
     777  #endif
     778  
     779  
     780  extern LZMA_API(lzma_bool)
     781  lzma_mode_is_supported(lzma_mode mode)
     782  {
     783  	return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
     784  }