(root)/
xz-5.4.5/
src/
liblzma/
lz/
lz_encoder.c
       1  ///////////////////////////////////////////////////////////////////////////////
       2  //
       3  /// \file       lz_encoder.c
       4  /// \brief      LZ in window
       5  ///
       6  //  Authors:    Igor Pavlov
       7  //              Lasse Collin
       8  //
       9  //  This file has been put into the public domain.
      10  //  You can do whatever you want with this file.
      11  //
      12  ///////////////////////////////////////////////////////////////////////////////
      13  
      14  #include "lz_encoder.h"
      15  #include "lz_encoder_hash.h"
      16  
      17  // See lz_encoder_hash.h. This is a bit hackish but avoids making
      18  // endianness a conditional in makefiles.
      19  #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
      20  #	include "lz_encoder_hash_table.h"
      21  #endif
      22  
      23  #include "memcmplen.h"
      24  
      25  
      26  typedef struct {
      27  	/// LZ-based encoder e.g. LZMA
      28  	lzma_lz_encoder lz;
      29  
      30  	/// History buffer and match finder
      31  	lzma_mf mf;
      32  
      33  	/// Next coder in the chain
      34  	lzma_next_coder next;
      35  } lzma_coder;
      36  
      37  
      38  /// \brief      Moves the data in the input window to free space for new data
      39  ///
      40  /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
      41  /// bytes of input history available all the time. Now and then we need to
      42  /// "slide" the buffer to make space for the new data to the end of the
      43  /// buffer. At the same time, data older than keep_size_before is dropped.
      44  ///
      45  static void
      46  move_window(lzma_mf *mf)
      47  {
      48  	// Align the move to a multiple of 16 bytes. Some LZ-based encoders
      49  	// like LZMA use the lowest bits of mf->read_pos to know the
      50  	// alignment of the uncompressed data. We also get better speed
      51  	// for memmove() with aligned buffers.
      52  	assert(mf->read_pos > mf->keep_size_before);
      53  	const uint32_t move_offset
      54  		= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
      55  
      56  	assert(mf->write_pos > move_offset);
      57  	const size_t move_size = mf->write_pos - move_offset;
      58  
      59  	assert(move_offset + move_size <= mf->size);
      60  
      61  	memmove(mf->buffer, mf->buffer + move_offset, move_size);
      62  
      63  	mf->offset += move_offset;
      64  	mf->read_pos -= move_offset;
      65  	mf->read_limit -= move_offset;
      66  	mf->write_pos -= move_offset;
      67  
      68  	return;
      69  }
      70  
      71  
      72  /// \brief      Tries to fill the input window (mf->buffer)
      73  ///
      74  /// If we are the last encoder in the chain, our input data is in in[].
      75  /// Otherwise we call the next filter in the chain to process in[] and
      76  /// write its output to mf->buffer.
      77  ///
      78  /// This function must not be called once it has returned LZMA_STREAM_END.
      79  ///
      80  static lzma_ret
      81  fill_window(lzma_coder *coder, const lzma_allocator *allocator,
      82  		const uint8_t *in, size_t *in_pos, size_t in_size,
      83  		lzma_action action)
      84  {
      85  	assert(coder->mf.read_pos <= coder->mf.write_pos);
      86  
      87  	// Move the sliding window if needed.
      88  	if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
      89  		move_window(&coder->mf);
      90  
      91  	// Maybe this is ugly, but lzma_mf uses uint32_t for most things
      92  	// (which I find cleanest), but we need size_t here when filling
      93  	// the history window.
      94  	size_t write_pos = coder->mf.write_pos;
      95  	lzma_ret ret;
      96  	if (coder->next.code == NULL) {
      97  		// Not using a filter, simply memcpy() as much as possible.
      98  		lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
      99  				&write_pos, coder->mf.size);
     100  
     101  		ret = action != LZMA_RUN && *in_pos == in_size
     102  				? LZMA_STREAM_END : LZMA_OK;
     103  
     104  	} else {
     105  		ret = coder->next.code(coder->next.coder, allocator,
     106  				in, in_pos, in_size,
     107  				coder->mf.buffer, &write_pos,
     108  				coder->mf.size, action);
     109  	}
     110  
     111  	coder->mf.write_pos = write_pos;
     112  
     113  	// Silence Valgrind. lzma_memcmplen() can read extra bytes
     114  	// and Valgrind will give warnings if those bytes are uninitialized
     115  	// because Valgrind cannot see that the values of the uninitialized
     116  	// bytes are eventually ignored.
     117  	memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
     118  
     119  	// If end of stream has been reached or flushing completed, we allow
     120  	// the encoder to process all the input (that is, read_pos is allowed
     121  	// to reach write_pos). Otherwise we keep keep_size_after bytes
     122  	// available as prebuffer.
     123  	if (ret == LZMA_STREAM_END) {
     124  		assert(*in_pos == in_size);
     125  		ret = LZMA_OK;
     126  		coder->mf.action = action;
     127  		coder->mf.read_limit = coder->mf.write_pos;
     128  
     129  	} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
     130  		// This needs to be done conditionally, because if we got
     131  		// only little new input, there may be too little input
     132  		// to do any encoding yet.
     133  		coder->mf.read_limit = coder->mf.write_pos
     134  				- coder->mf.keep_size_after;
     135  	}
     136  
     137  	// Restart the match finder after finished LZMA_SYNC_FLUSH.
     138  	if (coder->mf.pending > 0
     139  			&& coder->mf.read_pos < coder->mf.read_limit) {
     140  		// Match finder may update coder->pending and expects it to
     141  		// start from zero, so use a temporary variable.
     142  		const uint32_t pending = coder->mf.pending;
     143  		coder->mf.pending = 0;
     144  
     145  		// Rewind read_pos so that the match finder can hash
     146  		// the pending bytes.
     147  		assert(coder->mf.read_pos >= pending);
     148  		coder->mf.read_pos -= pending;
     149  
     150  		// Call the skip function directly instead of using
     151  		// mf_skip(), since we don't want to touch mf->read_ahead.
     152  		coder->mf.skip(&coder->mf, pending);
     153  	}
     154  
     155  	return ret;
     156  }
     157  
     158  
     159  static lzma_ret
     160  lz_encode(void *coder_ptr, const lzma_allocator *allocator,
     161  		const uint8_t *restrict in, size_t *restrict in_pos,
     162  		size_t in_size,
     163  		uint8_t *restrict out, size_t *restrict out_pos,
     164  		size_t out_size, lzma_action action)
     165  {
     166  	lzma_coder *coder = coder_ptr;
     167  
     168  	while (*out_pos < out_size
     169  			&& (*in_pos < in_size || action != LZMA_RUN)) {
     170  		// Read more data to coder->mf.buffer if needed.
     171  		if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
     172  				>= coder->mf.read_limit)
     173  			return_if_error(fill_window(coder, allocator,
     174  					in, in_pos, in_size, action));
     175  
     176  		// Encode
     177  		const lzma_ret ret = coder->lz.code(coder->lz.coder,
     178  				&coder->mf, out, out_pos, out_size);
     179  		if (ret != LZMA_OK) {
     180  			// Setting this to LZMA_RUN for cases when we are
     181  			// flushing. It doesn't matter when finishing or if
     182  			// an error occurred.
     183  			coder->mf.action = LZMA_RUN;
     184  			return ret;
     185  		}
     186  	}
     187  
     188  	return LZMA_OK;
     189  }
     190  
     191  
     192  static bool
     193  lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
     194  		const lzma_lz_options *lz_options)
     195  {
     196  	// For now, the dictionary size is limited to 1.5 GiB. This may grow
     197  	// in the future if needed, but it needs a little more work than just
     198  	// changing this check.
     199  	if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
     200  			|| lz_options->dict_size
     201  				> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
     202  			|| lz_options->nice_len > lz_options->match_len_max)
     203  		return true;
     204  
     205  	mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
     206  
     207  	mf->keep_size_after = lz_options->after_size
     208  			+ lz_options->match_len_max;
     209  
     210  	// To avoid constant memmove()s, allocate some extra space. Since
     211  	// memmove()s become more expensive when the size of the buffer
     212  	// increases, we reserve more space when a large dictionary is
     213  	// used to make the memmove() calls rarer.
     214  	//
     215  	// This works with dictionaries up to about 3 GiB. If bigger
     216  	// dictionary is wanted, some extra work is needed:
     217  	//   - Several variables in lzma_mf have to be changed from uint32_t
     218  	//     to size_t.
     219  	//   - Memory usage calculation needs something too, e.g. use uint64_t
     220  	//     for mf->size.
     221  	uint32_t reserve = lz_options->dict_size / 2;
     222  	if (reserve > (UINT32_C(1) << 30))
     223  		reserve /= 2;
     224  
     225  	reserve += (lz_options->before_size + lz_options->match_len_max
     226  			+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
     227  
     228  	const uint32_t old_size = mf->size;
     229  	mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
     230  
     231  	// Deallocate the old history buffer if it exists but has different
     232  	// size than what is needed now.
     233  	if (mf->buffer != NULL && old_size != mf->size) {
     234  		lzma_free(mf->buffer, allocator);
     235  		mf->buffer = NULL;
     236  	}
     237  
     238  	// Match finder options
     239  	mf->match_len_max = lz_options->match_len_max;
     240  	mf->nice_len = lz_options->nice_len;
     241  
     242  	// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
     243  	// mean limiting dictionary size to less than 2 GiB. With a match
     244  	// finder that uses multibyte resolution (hashes start at e.g. every
     245  	// fourth byte), cyclic_size would stay below 2 Gi even when
     246  	// dictionary size is greater than 2 GiB.
     247  	//
     248  	// It would be possible to allow cyclic_size >= 2 Gi, but then we
     249  	// would need to be careful to use 64-bit types in various places
     250  	// (size_t could do since we would need bigger than 32-bit address
     251  	// space anyway). It would also require either zeroing a multigigabyte
     252  	// buffer at initialization (waste of time and RAM) or allow
     253  	// normalization in lz_encoder_mf.c to access uninitialized
     254  	// memory to keep the code simpler. The current way is simple and
     255  	// still allows pretty big dictionaries, so I don't expect these
     256  	// limits to change.
     257  	mf->cyclic_size = lz_options->dict_size + 1;
     258  
     259  	// Validate the match finder ID and setup the function pointers.
     260  	switch (lz_options->match_finder) {
     261  #ifdef HAVE_MF_HC3
     262  	case LZMA_MF_HC3:
     263  		mf->find = &lzma_mf_hc3_find;
     264  		mf->skip = &lzma_mf_hc3_skip;
     265  		break;
     266  #endif
     267  #ifdef HAVE_MF_HC4
     268  	case LZMA_MF_HC4:
     269  		mf->find = &lzma_mf_hc4_find;
     270  		mf->skip = &lzma_mf_hc4_skip;
     271  		break;
     272  #endif
     273  #ifdef HAVE_MF_BT2
     274  	case LZMA_MF_BT2:
     275  		mf->find = &lzma_mf_bt2_find;
     276  		mf->skip = &lzma_mf_bt2_skip;
     277  		break;
     278  #endif
     279  #ifdef HAVE_MF_BT3
     280  	case LZMA_MF_BT3:
     281  		mf->find = &lzma_mf_bt3_find;
     282  		mf->skip = &lzma_mf_bt3_skip;
     283  		break;
     284  #endif
     285  #ifdef HAVE_MF_BT4
     286  	case LZMA_MF_BT4:
     287  		mf->find = &lzma_mf_bt4_find;
     288  		mf->skip = &lzma_mf_bt4_skip;
     289  		break;
     290  #endif
     291  
     292  	default:
     293  		return true;
     294  	}
     295  
     296  	// Calculate the sizes of mf->hash and mf->son.
     297  	//
     298  	// NOTE: Since 5.3.5beta the LZMA encoder ensures that nice_len
     299  	// is big enough for the selected match finder. This makes it
     300  	// easier for applications as nice_len = 2 will always be accepted
     301  	// even though the effective value can be slightly bigger.
     302  	const uint32_t hash_bytes
     303  			= mf_get_hash_bytes(lz_options->match_finder);
     304  	assert(hash_bytes <= mf->nice_len);
     305  
     306  	const bool is_bt = (lz_options->match_finder & 0x10) != 0;
     307  	uint32_t hs;
     308  
     309  	if (hash_bytes == 2) {
     310  		hs = 0xFFFF;
     311  	} else {
     312  		// Round dictionary size up to the next 2^n - 1 so it can
     313  		// be used as a hash mask.
     314  		hs = lz_options->dict_size - 1;
     315  		hs |= hs >> 1;
     316  		hs |= hs >> 2;
     317  		hs |= hs >> 4;
     318  		hs |= hs >> 8;
     319  		hs >>= 1;
     320  		hs |= 0xFFFF;
     321  
     322  		if (hs > (UINT32_C(1) << 24)) {
     323  			if (hash_bytes == 3)
     324  				hs = (UINT32_C(1) << 24) - 1;
     325  			else
     326  				hs >>= 1;
     327  		}
     328  	}
     329  
     330  	mf->hash_mask = hs;
     331  
     332  	++hs;
     333  	if (hash_bytes > 2)
     334  		hs += HASH_2_SIZE;
     335  	if (hash_bytes > 3)
     336  		hs += HASH_3_SIZE;
     337  /*
     338  	No match finder uses this at the moment.
     339  	if (mf->hash_bytes > 4)
     340  		hs += HASH_4_SIZE;
     341  */
     342  
     343  	const uint32_t old_hash_count = mf->hash_count;
     344  	const uint32_t old_sons_count = mf->sons_count;
     345  	mf->hash_count = hs;
     346  	mf->sons_count = mf->cyclic_size;
     347  	if (is_bt)
     348  		mf->sons_count *= 2;
     349  
     350  	// Deallocate the old hash array if it exists and has different size
     351  	// than what is needed now.
     352  	if (old_hash_count != mf->hash_count
     353  			|| old_sons_count != mf->sons_count) {
     354  		lzma_free(mf->hash, allocator);
     355  		mf->hash = NULL;
     356  
     357  		lzma_free(mf->son, allocator);
     358  		mf->son = NULL;
     359  	}
     360  
     361  	// Maximum number of match finder cycles
     362  	mf->depth = lz_options->depth;
     363  	if (mf->depth == 0) {
     364  		if (is_bt)
     365  			mf->depth = 16 + mf->nice_len / 2;
     366  		else
     367  			mf->depth = 4 + mf->nice_len / 4;
     368  	}
     369  
     370  	return false;
     371  }
     372  
     373  
     374  static bool
     375  lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
     376  		const lzma_lz_options *lz_options)
     377  {
     378  	// Allocate the history buffer.
     379  	if (mf->buffer == NULL) {
     380  		// lzma_memcmplen() is used for the dictionary buffer
     381  		// so we need to allocate a few extra bytes to prevent
     382  		// it from reading past the end of the buffer.
     383  		mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
     384  				allocator);
     385  		if (mf->buffer == NULL)
     386  			return true;
     387  
     388  		// Keep Valgrind happy with lzma_memcmplen() and initialize
     389  		// the extra bytes whose value may get read but which will
     390  		// effectively get ignored.
     391  		memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
     392  	}
     393  
     394  	// Use cyclic_size as initial mf->offset. This allows
     395  	// avoiding a few branches in the match finders. The downside is
     396  	// that match finder needs to be normalized more often, which may
     397  	// hurt performance with huge dictionaries.
     398  	mf->offset = mf->cyclic_size;
     399  	mf->read_pos = 0;
     400  	mf->read_ahead = 0;
     401  	mf->read_limit = 0;
     402  	mf->write_pos = 0;
     403  	mf->pending = 0;
     404  
     405  #if UINT32_MAX >= SIZE_MAX / 4
     406  	// Check for integer overflow. (Huge dictionaries are not
     407  	// possible on 32-bit CPU.)
     408  	if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
     409  			|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
     410  		return true;
     411  #endif
     412  
     413  	// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
     414  	// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
     415  	//
     416  	// We don't need to initialize mf->son, but not doing that may
     417  	// make Valgrind complain in normalization (see normalize() in
     418  	// lz_encoder_mf.c). Skipping the initialization is *very* good
     419  	// when big dictionary is used but only small amount of data gets
     420  	// actually compressed: most of the mf->son won't get actually
     421  	// allocated by the kernel, so we avoid wasting RAM and improve
     422  	// initialization speed a lot.
     423  	if (mf->hash == NULL) {
     424  		mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
     425  				allocator);
     426  		mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
     427  				allocator);
     428  
     429  		if (mf->hash == NULL || mf->son == NULL) {
     430  			lzma_free(mf->hash, allocator);
     431  			mf->hash = NULL;
     432  
     433  			lzma_free(mf->son, allocator);
     434  			mf->son = NULL;
     435  
     436  			return true;
     437  		}
     438  	} else {
     439  /*
     440  		for (uint32_t i = 0; i < mf->hash_count; ++i)
     441  			mf->hash[i] = EMPTY_HASH_VALUE;
     442  */
     443  		memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
     444  	}
     445  
     446  	mf->cyclic_pos = 0;
     447  
     448  	// Handle preset dictionary.
     449  	if (lz_options->preset_dict != NULL
     450  			&& lz_options->preset_dict_size > 0) {
     451  		// If the preset dictionary is bigger than the actual
     452  		// dictionary, use only the tail.
     453  		mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
     454  		memcpy(mf->buffer, lz_options->preset_dict
     455  				+ lz_options->preset_dict_size - mf->write_pos,
     456  				mf->write_pos);
     457  		mf->action = LZMA_SYNC_FLUSH;
     458  		mf->skip(mf, mf->write_pos);
     459  	}
     460  
     461  	mf->action = LZMA_RUN;
     462  
     463  	return false;
     464  }
     465  
     466  
     467  extern uint64_t
     468  lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
     469  {
     470  	// Old buffers must not exist when calling lz_encoder_prepare().
     471  	lzma_mf mf = {
     472  		.buffer = NULL,
     473  		.hash = NULL,
     474  		.son = NULL,
     475  		.hash_count = 0,
     476  		.sons_count = 0,
     477  	};
     478  
     479  	// Setup the size information into mf.
     480  	if (lz_encoder_prepare(&mf, NULL, lz_options))
     481  		return UINT64_MAX;
     482  
     483  	// Calculate the memory usage.
     484  	return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
     485  			+ mf.size + sizeof(lzma_coder);
     486  }
     487  
     488  
     489  static void
     490  lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
     491  {
     492  	lzma_coder *coder = coder_ptr;
     493  
     494  	lzma_next_end(&coder->next, allocator);
     495  
     496  	lzma_free(coder->mf.son, allocator);
     497  	lzma_free(coder->mf.hash, allocator);
     498  	lzma_free(coder->mf.buffer, allocator);
     499  
     500  	if (coder->lz.end != NULL)
     501  		coder->lz.end(coder->lz.coder, allocator);
     502  	else
     503  		lzma_free(coder->lz.coder, allocator);
     504  
     505  	lzma_free(coder, allocator);
     506  	return;
     507  }
     508  
     509  
     510  static lzma_ret
     511  lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
     512  		const lzma_filter *filters_null lzma_attribute((__unused__)),
     513  		const lzma_filter *reversed_filters)
     514  {
     515  	lzma_coder *coder = coder_ptr;
     516  
     517  	if (coder->lz.options_update == NULL)
     518  		return LZMA_PROG_ERROR;
     519  
     520  	return_if_error(coder->lz.options_update(
     521  			coder->lz.coder, reversed_filters));
     522  
     523  	return lzma_next_filter_update(
     524  			&coder->next, allocator, reversed_filters + 1);
     525  }
     526  
     527  
     528  static lzma_ret
     529  lz_encoder_set_out_limit(void *coder_ptr, uint64_t *uncomp_size,
     530  		uint64_t out_limit)
     531  {
     532  	lzma_coder *coder = coder_ptr;
     533  
     534  	// This is supported only if there are no other filters chained.
     535  	if (coder->next.code == NULL && coder->lz.set_out_limit != NULL)
     536  		return coder->lz.set_out_limit(
     537  				coder->lz.coder, uncomp_size, out_limit);
     538  
     539  	return LZMA_OPTIONS_ERROR;
     540  }
     541  
     542  
     543  extern lzma_ret
     544  lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
     545  		const lzma_filter_info *filters,
     546  		lzma_ret (*lz_init)(lzma_lz_encoder *lz,
     547  			const lzma_allocator *allocator,
     548  			lzma_vli id, const void *options,
     549  			lzma_lz_options *lz_options))
     550  {
     551  #if defined(HAVE_SMALL) && !defined(HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR)
     552  	// We need that the CRC32 table has been initialized.
     553  	lzma_crc32_init();
     554  #endif
     555  
     556  	// Allocate and initialize the base data structure.
     557  	lzma_coder *coder = next->coder;
     558  	if (coder == NULL) {
     559  		coder = lzma_alloc(sizeof(lzma_coder), allocator);
     560  		if (coder == NULL)
     561  			return LZMA_MEM_ERROR;
     562  
     563  		next->coder = coder;
     564  		next->code = &lz_encode;
     565  		next->end = &lz_encoder_end;
     566  		next->update = &lz_encoder_update;
     567  		next->set_out_limit = &lz_encoder_set_out_limit;
     568  
     569  		coder->lz.coder = NULL;
     570  		coder->lz.code = NULL;
     571  		coder->lz.end = NULL;
     572  
     573  		// mf.size is initialized to silence Valgrind
     574  		// when used on optimized binaries (GCC may reorder
     575  		// code in a way that Valgrind gets unhappy).
     576  		coder->mf.buffer = NULL;
     577  		coder->mf.size = 0;
     578  		coder->mf.hash = NULL;
     579  		coder->mf.son = NULL;
     580  		coder->mf.hash_count = 0;
     581  		coder->mf.sons_count = 0;
     582  
     583  		coder->next = LZMA_NEXT_CODER_INIT;
     584  	}
     585  
     586  	// Initialize the LZ-based encoder.
     587  	lzma_lz_options lz_options;
     588  	return_if_error(lz_init(&coder->lz, allocator,
     589  			filters[0].id, filters[0].options, &lz_options));
     590  
     591  	// Setup the size information into coder->mf and deallocate
     592  	// old buffers if they have wrong size.
     593  	if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
     594  		return LZMA_OPTIONS_ERROR;
     595  
     596  	// Allocate new buffers if needed, and do the rest of
     597  	// the initialization.
     598  	if (lz_encoder_init(&coder->mf, allocator, &lz_options))
     599  		return LZMA_MEM_ERROR;
     600  
     601  	// Initialize the next filter in the chain, if any.
     602  	return lzma_next_filter_init(&coder->next, allocator, filters + 1);
     603  }
     604  
     605  
     606  extern LZMA_API(lzma_bool)
     607  lzma_mf_is_supported(lzma_match_finder mf)
     608  {
     609  	switch (mf) {
     610  #ifdef HAVE_MF_HC3
     611  	case LZMA_MF_HC3:
     612  		return true;
     613  #endif
     614  #ifdef HAVE_MF_HC4
     615  	case LZMA_MF_HC4:
     616  		return true;
     617  #endif
     618  #ifdef HAVE_MF_BT2
     619  	case LZMA_MF_BT2:
     620  		return true;
     621  #endif
     622  #ifdef HAVE_MF_BT3
     623  	case LZMA_MF_BT3:
     624  		return true;
     625  #endif
     626  #ifdef HAVE_MF_BT4
     627  	case LZMA_MF_BT4:
     628  		return true;
     629  #endif
     630  	default:
     631  		return false;
     632  	}
     633  }