(root)/
xz-5.4.5/
src/
liblzma/
lz/
lz_decoder.c
       1  ///////////////////////////////////////////////////////////////////////////////
       2  //
       3  /// \file       lz_decoder.c
       4  /// \brief      LZ out window
       5  ///
       6  //  Authors:    Igor Pavlov
       7  //              Lasse Collin
       8  //
       9  //  This file has been put into the public domain.
      10  //  You can do whatever you want with this file.
      11  //
      12  ///////////////////////////////////////////////////////////////////////////////
      13  
      14  // liblzma supports multiple LZ77-based filters. The LZ part is shared
      15  // between these filters. The LZ code takes care of dictionary handling
      16  // and passing the data between filters in the chain. The filter-specific
      17  // part decodes from the input buffer to the dictionary.
      18  
      19  
      20  #include "lz_decoder.h"
      21  
      22  
      23  typedef struct {
      24  	/// Dictionary (history buffer)
      25  	lzma_dict dict;
      26  
      27  	/// The actual LZ-based decoder e.g. LZMA
      28  	lzma_lz_decoder lz;
      29  
      30  	/// Next filter in the chain, if any. Note that LZMA and LZMA2 are
      31  	/// only allowed as the last filter, but the long-range filter in
      32  	/// future can be in the middle of the chain.
      33  	lzma_next_coder next;
      34  
      35  	/// True if the next filter in the chain has returned LZMA_STREAM_END.
      36  	bool next_finished;
      37  
      38  	/// True if the LZ decoder (e.g. LZMA) has detected end of payload
      39  	/// marker. This may become true before next_finished becomes true.
      40  	bool this_finished;
      41  
      42  	/// Temporary buffer needed when the LZ-based filter is not the last
      43  	/// filter in the chain. The output of the next filter is first
      44  	/// decoded into buffer[], which is then used as input for the actual
      45  	/// LZ-based decoder.
      46  	struct {
      47  		size_t pos;
      48  		size_t size;
      49  		uint8_t buffer[LZMA_BUFFER_SIZE];
      50  	} temp;
      51  } lzma_coder;
      52  
      53  
      54  static void
      55  lz_decoder_reset(lzma_coder *coder)
      56  {
      57  	coder->dict.pos = 0;
      58  	coder->dict.full = 0;
      59  	coder->dict.buf[coder->dict.size - 1] = '\0';
      60  	coder->dict.need_reset = false;
      61  	return;
      62  }
      63  
      64  
      65  static lzma_ret
      66  decode_buffer(lzma_coder *coder,
      67  		const uint8_t *restrict in, size_t *restrict in_pos,
      68  		size_t in_size, uint8_t *restrict out,
      69  		size_t *restrict out_pos, size_t out_size)
      70  {
      71  	while (true) {
      72  		// Wrap the dictionary if needed.
      73  		if (coder->dict.pos == coder->dict.size)
      74  			coder->dict.pos = 0;
      75  
      76  		// Store the current dictionary position. It is needed to know
      77  		// where to start copying to the out[] buffer.
      78  		const size_t dict_start = coder->dict.pos;
      79  
      80  		// Calculate how much we allow coder->lz.code() to decode.
      81  		// It must not decode past the end of the dictionary
      82  		// buffer, and we don't want it to decode more than is
      83  		// actually needed to fill the out[] buffer.
      84  		coder->dict.limit = coder->dict.pos
      85  				+ my_min(out_size - *out_pos,
      86  					coder->dict.size - coder->dict.pos);
      87  
      88  		// Call the coder->lz.code() to do the actual decoding.
      89  		const lzma_ret ret = coder->lz.code(
      90  				coder->lz.coder, &coder->dict,
      91  				in, in_pos, in_size);
      92  
      93  		// Copy the decoded data from the dictionary to the out[]
      94  		// buffer. Do it conditionally because out can be NULL
      95  		// (in which case copy_size is always 0). Calling memcpy()
      96  		// with a null-pointer is undefined even if the third
      97  		// argument is 0.
      98  		const size_t copy_size = coder->dict.pos - dict_start;
      99  		assert(copy_size <= out_size - *out_pos);
     100  
     101  		if (copy_size > 0)
     102  			memcpy(out + *out_pos, coder->dict.buf + dict_start,
     103  					copy_size);
     104  
     105  		*out_pos += copy_size;
     106  
     107  		// Reset the dictionary if so requested by coder->lz.code().
     108  		if (coder->dict.need_reset) {
     109  			lz_decoder_reset(coder);
     110  
     111  			// Since we reset dictionary, we don't check if
     112  			// dictionary became full.
     113  			if (ret != LZMA_OK || *out_pos == out_size)
     114  				return ret;
     115  		} else {
     116  			// Return if everything got decoded or an error
     117  			// occurred, or if there's no more data to decode.
     118  			//
     119  			// Note that detecting if there's something to decode
     120  			// is done by looking if dictionary become full
     121  			// instead of looking if *in_pos == in_size. This
     122  			// is because it is possible that all the input was
     123  			// consumed already but some data is pending to be
     124  			// written to the dictionary.
     125  			if (ret != LZMA_OK || *out_pos == out_size
     126  					|| coder->dict.pos < coder->dict.size)
     127  				return ret;
     128  		}
     129  	}
     130  }
     131  
     132  
     133  static lzma_ret
     134  lz_decode(void *coder_ptr, const lzma_allocator *allocator,
     135  		const uint8_t *restrict in, size_t *restrict in_pos,
     136  		size_t in_size, uint8_t *restrict out,
     137  		size_t *restrict out_pos, size_t out_size,
     138  		lzma_action action)
     139  {
     140  	lzma_coder *coder = coder_ptr;
     141  
     142  	if (coder->next.code == NULL)
     143  		return decode_buffer(coder, in, in_pos, in_size,
     144  				out, out_pos, out_size);
     145  
     146  	// We aren't the last coder in the chain, we need to decode
     147  	// our input to a temporary buffer.
     148  	while (*out_pos < out_size) {
     149  		// Fill the temporary buffer if it is empty.
     150  		if (!coder->next_finished
     151  				&& coder->temp.pos == coder->temp.size) {
     152  			coder->temp.pos = 0;
     153  			coder->temp.size = 0;
     154  
     155  			const lzma_ret ret = coder->next.code(
     156  					coder->next.coder,
     157  					allocator, in, in_pos, in_size,
     158  					coder->temp.buffer, &coder->temp.size,
     159  					LZMA_BUFFER_SIZE, action);
     160  
     161  			if (ret == LZMA_STREAM_END)
     162  				coder->next_finished = true;
     163  			else if (ret != LZMA_OK || coder->temp.size == 0)
     164  				return ret;
     165  		}
     166  
     167  		if (coder->this_finished) {
     168  			if (coder->temp.size != 0)
     169  				return LZMA_DATA_ERROR;
     170  
     171  			if (coder->next_finished)
     172  				return LZMA_STREAM_END;
     173  
     174  			return LZMA_OK;
     175  		}
     176  
     177  		const lzma_ret ret = decode_buffer(coder, coder->temp.buffer,
     178  				&coder->temp.pos, coder->temp.size,
     179  				out, out_pos, out_size);
     180  
     181  		if (ret == LZMA_STREAM_END)
     182  			coder->this_finished = true;
     183  		else if (ret != LZMA_OK)
     184  			return ret;
     185  		else if (coder->next_finished && *out_pos < out_size)
     186  			return LZMA_DATA_ERROR;
     187  	}
     188  
     189  	return LZMA_OK;
     190  }
     191  
     192  
     193  static void
     194  lz_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
     195  {
     196  	lzma_coder *coder = coder_ptr;
     197  
     198  	lzma_next_end(&coder->next, allocator);
     199  	lzma_free(coder->dict.buf, allocator);
     200  
     201  	if (coder->lz.end != NULL)
     202  		coder->lz.end(coder->lz.coder, allocator);
     203  	else
     204  		lzma_free(coder->lz.coder, allocator);
     205  
     206  	lzma_free(coder, allocator);
     207  	return;
     208  }
     209  
     210  
     211  extern lzma_ret
     212  lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
     213  		const lzma_filter_info *filters,
     214  		lzma_ret (*lz_init)(lzma_lz_decoder *lz,
     215  			const lzma_allocator *allocator,
     216  			lzma_vli id, const void *options,
     217  			lzma_lz_options *lz_options))
     218  {
     219  	// Allocate the base structure if it isn't already allocated.
     220  	lzma_coder *coder = next->coder;
     221  	if (coder == NULL) {
     222  		coder = lzma_alloc(sizeof(lzma_coder), allocator);
     223  		if (coder == NULL)
     224  			return LZMA_MEM_ERROR;
     225  
     226  		next->coder = coder;
     227  		next->code = &lz_decode;
     228  		next->end = &lz_decoder_end;
     229  
     230  		coder->dict.buf = NULL;
     231  		coder->dict.size = 0;
     232  		coder->lz = LZMA_LZ_DECODER_INIT;
     233  		coder->next = LZMA_NEXT_CODER_INIT;
     234  	}
     235  
     236  	// Allocate and initialize the LZ-based decoder. It will also give
     237  	// us the dictionary size.
     238  	lzma_lz_options lz_options;
     239  	return_if_error(lz_init(&coder->lz, allocator,
     240  			filters[0].id, filters[0].options, &lz_options));
     241  
     242  	// If the dictionary size is very small, increase it to 4096 bytes.
     243  	// This is to prevent constant wrapping of the dictionary, which
     244  	// would slow things down. The downside is that since we don't check
     245  	// separately for the real dictionary size, we may happily accept
     246  	// corrupt files.
     247  	if (lz_options.dict_size < 4096)
     248  		lz_options.dict_size = 4096;
     249  
     250  	// Make dictionary size a multiple of 16. Some LZ-based decoders like
     251  	// LZMA use the lowest bits lzma_dict.pos to know the alignment of the
     252  	// data. Aligned buffer is also good when memcpying from the
     253  	// dictionary to the output buffer, since applications are
     254  	// recommended to give aligned buffers to liblzma.
     255  	//
     256  	// Avoid integer overflow.
     257  	if (lz_options.dict_size > SIZE_MAX - 15)
     258  		return LZMA_MEM_ERROR;
     259  
     260  	lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15));
     261  
     262  	// Allocate and initialize the dictionary.
     263  	if (coder->dict.size != lz_options.dict_size) {
     264  		lzma_free(coder->dict.buf, allocator);
     265  		coder->dict.buf
     266  				= lzma_alloc(lz_options.dict_size, allocator);
     267  		if (coder->dict.buf == NULL)
     268  			return LZMA_MEM_ERROR;
     269  
     270  		coder->dict.size = lz_options.dict_size;
     271  	}
     272  
     273  	lz_decoder_reset(next->coder);
     274  
     275  	// Use the preset dictionary if it was given to us.
     276  	if (lz_options.preset_dict != NULL
     277  			&& lz_options.preset_dict_size > 0) {
     278  		// If the preset dictionary is bigger than the actual
     279  		// dictionary, copy only the tail.
     280  		const size_t copy_size = my_min(lz_options.preset_dict_size,
     281  				lz_options.dict_size);
     282  		const size_t offset = lz_options.preset_dict_size - copy_size;
     283  		memcpy(coder->dict.buf, lz_options.preset_dict + offset,
     284  				copy_size);
     285  		coder->dict.pos = copy_size;
     286  		coder->dict.full = copy_size;
     287  	}
     288  
     289  	// Miscellaneous initializations
     290  	coder->next_finished = false;
     291  	coder->this_finished = false;
     292  	coder->temp.pos = 0;
     293  	coder->temp.size = 0;
     294  
     295  	// Initialize the next filter in the chain, if any.
     296  	return lzma_next_filter_init(&coder->next, allocator, filters + 1);
     297  }
     298  
     299  
     300  extern uint64_t
     301  lzma_lz_decoder_memusage(size_t dictionary_size)
     302  {
     303  	return sizeof(lzma_coder) + (uint64_t)(dictionary_size);
     304  }