(root)/
xz-5.4.5/
src/
liblzma/
common/
index.c
       1  ///////////////////////////////////////////////////////////////////////////////
       2  //
       3  /// \file       index.c
       4  /// \brief      Handling of .xz Indexes and some other Stream information
       5  //
       6  //  Author:     Lasse Collin
       7  //
       8  //  This file has been put into the public domain.
       9  //  You can do whatever you want with this file.
      10  //
      11  ///////////////////////////////////////////////////////////////////////////////
      12  
      13  #include "common.h"
      14  #include "index.h"
      15  #include "stream_flags_common.h"
      16  
      17  
      18  /// \brief      How many Records to allocate at once
      19  ///
      20  /// This should be big enough to avoid making lots of tiny allocations
      21  /// but small enough to avoid too much unused memory at once.
      22  #define INDEX_GROUP_SIZE 512
      23  
      24  
      25  /// \brief      How many Records can be allocated at once at maximum
      26  #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
      27  
      28  
      29  /// \brief      Base structure for index_stream and index_group structures
      30  typedef struct index_tree_node_s index_tree_node;
      31  struct index_tree_node_s {
      32  	/// Uncompressed start offset of this Stream (relative to the
      33  	/// beginning of the file) or Block (relative to the beginning
      34  	/// of the Stream)
      35  	lzma_vli uncompressed_base;
      36  
      37  	/// Compressed start offset of this Stream or Block
      38  	lzma_vli compressed_base;
      39  
      40  	index_tree_node *parent;
      41  	index_tree_node *left;
      42  	index_tree_node *right;
      43  };
      44  
      45  
      46  /// \brief      AVL tree to hold index_stream or index_group structures
      47  typedef struct {
      48  	/// Root node
      49  	index_tree_node *root;
      50  
      51  	/// Leftmost node. Since the tree will be filled sequentially,
      52  	/// this won't change after the first node has been added to
      53  	/// the tree.
      54  	index_tree_node *leftmost;
      55  
      56  	/// The rightmost node in the tree. Since the tree is filled
      57  	/// sequentially, this is always the node where to add the new data.
      58  	index_tree_node *rightmost;
      59  
      60  	/// Number of nodes in the tree
      61  	uint32_t count;
      62  
      63  } index_tree;
      64  
      65  
      66  typedef struct {
      67  	lzma_vli uncompressed_sum;
      68  	lzma_vli unpadded_sum;
      69  } index_record;
      70  
      71  
      72  typedef struct {
      73  	/// Every Record group is part of index_stream.groups tree.
      74  	index_tree_node node;
      75  
      76  	/// Number of Blocks in this Stream before this group.
      77  	lzma_vli number_base;
      78  
      79  	/// Number of Records that can be put in records[].
      80  	size_t allocated;
      81  
      82  	/// Index of the last Record in use.
      83  	size_t last;
      84  
      85  	/// The sizes in this array are stored as cumulative sums relative
      86  	/// to the beginning of the Stream. This makes it possible to
      87  	/// use binary search in lzma_index_locate().
      88  	///
      89  	/// Note that the cumulative summing is done specially for
      90  	/// unpadded_sum: The previous value is rounded up to the next
      91  	/// multiple of four before adding the Unpadded Size of the new
      92  	/// Block. The total encoded size of the Blocks in the Stream
      93  	/// is records[last].unpadded_sum in the last Record group of
      94  	/// the Stream.
      95  	///
      96  	/// For example, if the Unpadded Sizes are 39, 57, and 81, the
      97  	/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
      98  	/// The total encoded size of these Blocks is 184.
      99  	///
     100  	/// This is a flexible array, because it makes easy to optimize
     101  	/// memory usage in case someone concatenates many Streams that
     102  	/// have only one or few Blocks.
     103  	index_record records[];
     104  
     105  } index_group;
     106  
     107  
     108  typedef struct {
     109  	/// Every index_stream is a node in the tree of Streams.
     110  	index_tree_node node;
     111  
     112  	/// Number of this Stream (first one is 1)
     113  	uint32_t number;
     114  
     115  	/// Total number of Blocks before this Stream
     116  	lzma_vli block_number_base;
     117  
     118  	/// Record groups of this Stream are stored in a tree.
     119  	/// It's a T-tree with AVL-tree balancing. There are
     120  	/// INDEX_GROUP_SIZE Records per node by default.
     121  	/// This keeps the number of memory allocations reasonable
     122  	/// and finding a Record is fast.
     123  	index_tree groups;
     124  
     125  	/// Number of Records in this Stream
     126  	lzma_vli record_count;
     127  
     128  	/// Size of the List of Records field in this Stream. This is used
     129  	/// together with record_count to calculate the size of the Index
     130  	/// field and thus the total size of the Stream.
     131  	lzma_vli index_list_size;
     132  
     133  	/// Stream Flags of this Stream. This is meaningful only if
     134  	/// the Stream Flags have been told us with lzma_index_stream_flags().
     135  	/// Initially stream_flags.version is set to UINT32_MAX to indicate
     136  	/// that the Stream Flags are unknown.
     137  	lzma_stream_flags stream_flags;
     138  
     139  	/// Amount of Stream Padding after this Stream. This defaults to
     140  	/// zero and can be set with lzma_index_stream_padding().
     141  	lzma_vli stream_padding;
     142  
     143  } index_stream;
     144  
     145  
     146  struct lzma_index_s {
     147  	/// AVL-tree containing the Stream(s). Often there is just one
     148  	/// Stream, but using a tree keeps lookups fast even when there
     149  	/// are many concatenated Streams.
     150  	index_tree streams;
     151  
     152  	/// Uncompressed size of all the Blocks in the Stream(s)
     153  	lzma_vli uncompressed_size;
     154  
     155  	/// Total size of all the Blocks in the Stream(s)
     156  	lzma_vli total_size;
     157  
     158  	/// Total number of Records in all Streams in this lzma_index
     159  	lzma_vli record_count;
     160  
     161  	/// Size of the List of Records field if all the Streams in this
     162  	/// lzma_index were packed into a single Stream (makes it simpler to
     163  	/// take many .xz files and combine them into a single Stream).
     164  	///
     165  	/// This value together with record_count is needed to calculate
     166  	/// Backward Size that is stored into Stream Footer.
     167  	lzma_vli index_list_size;
     168  
     169  	/// How many Records to allocate at once in lzma_index_append().
     170  	/// This defaults to INDEX_GROUP_SIZE but can be overridden with
     171  	/// lzma_index_prealloc().
     172  	size_t prealloc;
     173  
     174  	/// Bitmask indicating what integrity check types have been used
     175  	/// as set by lzma_index_stream_flags(). The bit of the last Stream
     176  	/// is not included here, since it is possible to change it by
     177  	/// calling lzma_index_stream_flags() again.
     178  	uint32_t checks;
     179  };
     180  
     181  
     182  static void
     183  index_tree_init(index_tree *tree)
     184  {
     185  	tree->root = NULL;
     186  	tree->leftmost = NULL;
     187  	tree->rightmost = NULL;
     188  	tree->count = 0;
     189  	return;
     190  }
     191  
     192  
     193  /// Helper for index_tree_end()
     194  static void
     195  index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
     196  		void (*free_func)(void *node, const lzma_allocator *allocator))
     197  {
     198  	// The tree won't ever be very huge, so recursion should be fine.
     199  	// 20 levels in the tree is likely quite a lot already in practice.
     200  	if (node->left != NULL)
     201  		index_tree_node_end(node->left, allocator, free_func);
     202  
     203  	if (node->right != NULL)
     204  		index_tree_node_end(node->right, allocator, free_func);
     205  
     206  	free_func(node, allocator);
     207  	return;
     208  }
     209  
     210  
     211  /// Free the memory allocated for a tree. Each node is freed using the
     212  /// given free_func which is either &lzma_free or &index_stream_end.
     213  /// The latter is used to free the Record groups from each index_stream
     214  /// before freeing the index_stream itself.
     215  static void
     216  index_tree_end(index_tree *tree, const lzma_allocator *allocator,
     217  		void (*free_func)(void *node, const lzma_allocator *allocator))
     218  {
     219  	assert(free_func != NULL);
     220  
     221  	if (tree->root != NULL)
     222  		index_tree_node_end(tree->root, allocator, free_func);
     223  
     224  	return;
     225  }
     226  
     227  
     228  /// Add a new node to the tree. node->uncompressed_base and
     229  /// node->compressed_base must have been set by the caller already.
     230  static void
     231  index_tree_append(index_tree *tree, index_tree_node *node)
     232  {
     233  	node->parent = tree->rightmost;
     234  	node->left = NULL;
     235  	node->right = NULL;
     236  
     237  	++tree->count;
     238  
     239  	// Handle the special case of adding the first node.
     240  	if (tree->root == NULL) {
     241  		tree->root = node;
     242  		tree->leftmost = node;
     243  		tree->rightmost = node;
     244  		return;
     245  	}
     246  
     247  	// The tree is always filled sequentially.
     248  	assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
     249  	assert(tree->rightmost->compressed_base < node->compressed_base);
     250  
     251  	// Add the new node after the rightmost node. It's the correct
     252  	// place due to the reason above.
     253  	tree->rightmost->right = node;
     254  	tree->rightmost = node;
     255  
     256  	// Balance the AVL-tree if needed. We don't need to keep the balance
     257  	// factors in nodes, because we always fill the tree sequentially,
     258  	// and thus know the state of the tree just by looking at the node
     259  	// count. From the node count we can calculate how many steps to go
     260  	// up in the tree to find the rotation root.
     261  	uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
     262  	if (up != 0) {
     263  		// Locate the root node for the rotation.
     264  		up = ctz32(tree->count) + 2;
     265  		do {
     266  			node = node->parent;
     267  		} while (--up > 0);
     268  
     269  		// Rotate left using node as the rotation root.
     270  		index_tree_node *pivot = node->right;
     271  
     272  		if (node->parent == NULL) {
     273  			tree->root = pivot;
     274  		} else {
     275  			assert(node->parent->right == node);
     276  			node->parent->right = pivot;
     277  		}
     278  
     279  		pivot->parent = node->parent;
     280  
     281  		node->right = pivot->left;
     282  		if (node->right != NULL)
     283  			node->right->parent = node;
     284  
     285  		pivot->left = node;
     286  		node->parent = pivot;
     287  	}
     288  
     289  	return;
     290  }
     291  
     292  
     293  /// Get the next node in the tree. Return NULL if there are no more nodes.
     294  static void *
     295  index_tree_next(const index_tree_node *node)
     296  {
     297  	if (node->right != NULL) {
     298  		node = node->right;
     299  		while (node->left != NULL)
     300  			node = node->left;
     301  
     302  		return (void *)(node);
     303  	}
     304  
     305  	while (node->parent != NULL && node->parent->right == node)
     306  		node = node->parent;
     307  
     308  	return (void *)(node->parent);
     309  }
     310  
     311  
     312  /// Locate a node that contains the given uncompressed offset. It is
     313  /// caller's job to check that target is not bigger than the uncompressed
     314  /// size of the tree (the last node would be returned in that case still).
     315  static void *
     316  index_tree_locate(const index_tree *tree, lzma_vli target)
     317  {
     318  	const index_tree_node *result = NULL;
     319  	const index_tree_node *node = tree->root;
     320  
     321  	assert(tree->leftmost == NULL
     322  			|| tree->leftmost->uncompressed_base == 0);
     323  
     324  	// Consecutive nodes may have the same uncompressed_base.
     325  	// We must pick the rightmost one.
     326  	while (node != NULL) {
     327  		if (node->uncompressed_base > target) {
     328  			node = node->left;
     329  		} else {
     330  			result = node;
     331  			node = node->right;
     332  		}
     333  	}
     334  
     335  	return (void *)(result);
     336  }
     337  
     338  
     339  /// Allocate and initialize a new Stream using the given base offsets.
     340  static index_stream *
     341  index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
     342  		uint32_t stream_number, lzma_vli block_number_base,
     343  		const lzma_allocator *allocator)
     344  {
     345  	index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
     346  	if (s == NULL)
     347  		return NULL;
     348  
     349  	s->node.uncompressed_base = uncompressed_base;
     350  	s->node.compressed_base = compressed_base;
     351  	s->node.parent = NULL;
     352  	s->node.left = NULL;
     353  	s->node.right = NULL;
     354  
     355  	s->number = stream_number;
     356  	s->block_number_base = block_number_base;
     357  
     358  	index_tree_init(&s->groups);
     359  
     360  	s->record_count = 0;
     361  	s->index_list_size = 0;
     362  	s->stream_flags.version = UINT32_MAX;
     363  	s->stream_padding = 0;
     364  
     365  	return s;
     366  }
     367  
     368  
     369  /// Free the memory allocated for a Stream and its Record groups.
     370  static void
     371  index_stream_end(void *node, const lzma_allocator *allocator)
     372  {
     373  	index_stream *s = node;
     374  	index_tree_end(&s->groups, allocator, &lzma_free);
     375  	lzma_free(s, allocator);
     376  	return;
     377  }
     378  
     379  
     380  static lzma_index *
     381  index_init_plain(const lzma_allocator *allocator)
     382  {
     383  	lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
     384  	if (i != NULL) {
     385  		index_tree_init(&i->streams);
     386  		i->uncompressed_size = 0;
     387  		i->total_size = 0;
     388  		i->record_count = 0;
     389  		i->index_list_size = 0;
     390  		i->prealloc = INDEX_GROUP_SIZE;
     391  		i->checks = 0;
     392  	}
     393  
     394  	return i;
     395  }
     396  
     397  
     398  extern LZMA_API(lzma_index *)
     399  lzma_index_init(const lzma_allocator *allocator)
     400  {
     401  	lzma_index *i = index_init_plain(allocator);
     402  	if (i == NULL)
     403  		return NULL;
     404  
     405  	index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
     406  	if (s == NULL) {
     407  		lzma_free(i, allocator);
     408  		return NULL;
     409  	}
     410  
     411  	index_tree_append(&i->streams, &s->node);
     412  
     413  	return i;
     414  }
     415  
     416  
     417  extern LZMA_API(void)
     418  lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
     419  {
     420  	// NOTE: If you modify this function, check also the bottom
     421  	// of lzma_index_cat().
     422  	if (i != NULL) {
     423  		index_tree_end(&i->streams, allocator, &index_stream_end);
     424  		lzma_free(i, allocator);
     425  	}
     426  
     427  	return;
     428  }
     429  
     430  
     431  extern void
     432  lzma_index_prealloc(lzma_index *i, lzma_vli records)
     433  {
     434  	if (records > PREALLOC_MAX)
     435  		records = PREALLOC_MAX;
     436  
     437  	i->prealloc = (size_t)(records);
     438  	return;
     439  }
     440  
     441  
     442  extern LZMA_API(uint64_t)
     443  lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
     444  {
     445  	// This calculates an upper bound that is only a little bit
     446  	// bigger than the exact maximum memory usage with the given
     447  	// parameters.
     448  
     449  	// Typical malloc() overhead is 2 * sizeof(void *) but we take
     450  	// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
     451  	// instead would give too inaccurate estimate.
     452  	const size_t alloc_overhead = 4 * sizeof(void *);
     453  
     454  	// Amount of memory needed for each Stream base structures.
     455  	// We assume that every Stream has at least one Block and
     456  	// thus at least one group.
     457  	const size_t stream_base = sizeof(index_stream)
     458  			+ sizeof(index_group) + 2 * alloc_overhead;
     459  
     460  	// Amount of memory needed per group.
     461  	const size_t group_base = sizeof(index_group)
     462  			+ INDEX_GROUP_SIZE * sizeof(index_record)
     463  			+ alloc_overhead;
     464  
     465  	// Number of groups. There may actually be more, but that overhead
     466  	// has been taken into account in stream_base already.
     467  	const lzma_vli groups
     468  			= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
     469  
     470  	// Memory used by index_stream and index_group structures.
     471  	const uint64_t streams_mem = streams * stream_base;
     472  	const uint64_t groups_mem = groups * group_base;
     473  
     474  	// Memory used by the base structure.
     475  	const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
     476  
     477  	// Validate the arguments and catch integer overflows.
     478  	// Maximum number of Streams is "only" UINT32_MAX, because
     479  	// that limit is used by the tree containing the Streams.
     480  	const uint64_t limit = UINT64_MAX - index_base;
     481  	if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
     482  			|| streams > limit / stream_base
     483  			|| groups > limit / group_base
     484  			|| limit - streams_mem < groups_mem)
     485  		return UINT64_MAX;
     486  
     487  	return index_base + streams_mem + groups_mem;
     488  }
     489  
     490  
     491  extern LZMA_API(uint64_t)
     492  lzma_index_memused(const lzma_index *i)
     493  {
     494  	return lzma_index_memusage(i->streams.count, i->record_count);
     495  }
     496  
     497  
     498  extern LZMA_API(lzma_vli)
     499  lzma_index_block_count(const lzma_index *i)
     500  {
     501  	return i->record_count;
     502  }
     503  
     504  
     505  extern LZMA_API(lzma_vli)
     506  lzma_index_stream_count(const lzma_index *i)
     507  {
     508  	return i->streams.count;
     509  }
     510  
     511  
     512  extern LZMA_API(lzma_vli)
     513  lzma_index_size(const lzma_index *i)
     514  {
     515  	return index_size(i->record_count, i->index_list_size);
     516  }
     517  
     518  
     519  extern LZMA_API(lzma_vli)
     520  lzma_index_total_size(const lzma_index *i)
     521  {
     522  	return i->total_size;
     523  }
     524  
     525  
     526  extern LZMA_API(lzma_vli)
     527  lzma_index_stream_size(const lzma_index *i)
     528  {
     529  	// Stream Header + Blocks + Index + Stream Footer
     530  	return LZMA_STREAM_HEADER_SIZE + i->total_size
     531  			+ index_size(i->record_count, i->index_list_size)
     532  			+ LZMA_STREAM_HEADER_SIZE;
     533  }
     534  
     535  
     536  static lzma_vli
     537  index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
     538  		lzma_vli record_count, lzma_vli index_list_size,
     539  		lzma_vli stream_padding)
     540  {
     541  	// Earlier Streams and Stream Paddings + Stream Header
     542  	// + Blocks + Index + Stream Footer + Stream Padding
     543  	//
     544  	// This might go over LZMA_VLI_MAX due to too big unpadded_sum
     545  	// when this function is used in lzma_index_append().
     546  	lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
     547  			+ stream_padding + vli_ceil4(unpadded_sum);
     548  	if (file_size > LZMA_VLI_MAX)
     549  		return LZMA_VLI_UNKNOWN;
     550  
     551  	// The same applies here.
     552  	file_size += index_size(record_count, index_list_size);
     553  	if (file_size > LZMA_VLI_MAX)
     554  		return LZMA_VLI_UNKNOWN;
     555  
     556  	return file_size;
     557  }
     558  
     559  
     560  extern LZMA_API(lzma_vli)
     561  lzma_index_file_size(const lzma_index *i)
     562  {
     563  	const index_stream *s = (const index_stream *)(i->streams.rightmost);
     564  	const index_group *g = (const index_group *)(s->groups.rightmost);
     565  	return index_file_size(s->node.compressed_base,
     566  			g == NULL ? 0 : g->records[g->last].unpadded_sum,
     567  			s->record_count, s->index_list_size,
     568  			s->stream_padding);
     569  }
     570  
     571  
     572  extern LZMA_API(lzma_vli)
     573  lzma_index_uncompressed_size(const lzma_index *i)
     574  {
     575  	return i->uncompressed_size;
     576  }
     577  
     578  
     579  extern LZMA_API(uint32_t)
     580  lzma_index_checks(const lzma_index *i)
     581  {
     582  	uint32_t checks = i->checks;
     583  
     584  	// Get the type of the Check of the last Stream too.
     585  	const index_stream *s = (const index_stream *)(i->streams.rightmost);
     586  	if (s->stream_flags.version != UINT32_MAX)
     587  		checks |= UINT32_C(1) << s->stream_flags.check;
     588  
     589  	return checks;
     590  }
     591  
     592  
     593  extern uint32_t
     594  lzma_index_padding_size(const lzma_index *i)
     595  {
     596  	return (LZMA_VLI_C(4) - index_size_unpadded(
     597  			i->record_count, i->index_list_size)) & 3;
     598  }
     599  
     600  
     601  extern LZMA_API(lzma_ret)
     602  lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
     603  {
     604  	if (i == NULL || stream_flags == NULL)
     605  		return LZMA_PROG_ERROR;
     606  
     607  	// Validate the Stream Flags.
     608  	return_if_error(lzma_stream_flags_compare(
     609  			stream_flags, stream_flags));
     610  
     611  	index_stream *s = (index_stream *)(i->streams.rightmost);
     612  	s->stream_flags = *stream_flags;
     613  
     614  	return LZMA_OK;
     615  }
     616  
     617  
     618  extern LZMA_API(lzma_ret)
     619  lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
     620  {
     621  	if (i == NULL || stream_padding > LZMA_VLI_MAX
     622  			|| (stream_padding & 3) != 0)
     623  		return LZMA_PROG_ERROR;
     624  
     625  	index_stream *s = (index_stream *)(i->streams.rightmost);
     626  
     627  	// Check that the new value won't make the file grow too big.
     628  	const lzma_vli old_stream_padding = s->stream_padding;
     629  	s->stream_padding = 0;
     630  	if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
     631  		s->stream_padding = old_stream_padding;
     632  		return LZMA_DATA_ERROR;
     633  	}
     634  
     635  	s->stream_padding = stream_padding;
     636  	return LZMA_OK;
     637  }
     638  
     639  
     640  extern LZMA_API(lzma_ret)
     641  lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
     642  		lzma_vli unpadded_size, lzma_vli uncompressed_size)
     643  {
     644  	// Validate.
     645  	if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
     646  			|| unpadded_size > UNPADDED_SIZE_MAX
     647  			|| uncompressed_size > LZMA_VLI_MAX)
     648  		return LZMA_PROG_ERROR;
     649  
     650  	index_stream *s = (index_stream *)(i->streams.rightmost);
     651  	index_group *g = (index_group *)(s->groups.rightmost);
     652  
     653  	const lzma_vli compressed_base = g == NULL ? 0
     654  			: vli_ceil4(g->records[g->last].unpadded_sum);
     655  	const lzma_vli uncompressed_base = g == NULL ? 0
     656  			: g->records[g->last].uncompressed_sum;
     657  	const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
     658  			+ lzma_vli_size(uncompressed_size);
     659  
     660  	// Check that uncompressed size will not overflow.
     661  	if (uncompressed_base + uncompressed_size > LZMA_VLI_MAX)
     662  		return LZMA_DATA_ERROR;
     663  
     664  	// Check that the new unpadded sum will not overflow. This is
     665  	// checked again in index_file_size(), but the unpadded sum is
     666  	// passed to vli_ceil4() which expects a valid lzma_vli value.
     667  	if (compressed_base + unpadded_size > UNPADDED_SIZE_MAX)
     668  		return LZMA_DATA_ERROR;
     669  
     670  	// Check that the file size will stay within limits.
     671  	if (index_file_size(s->node.compressed_base,
     672  			compressed_base + unpadded_size, s->record_count + 1,
     673  			s->index_list_size + index_list_size_add,
     674  			s->stream_padding) == LZMA_VLI_UNKNOWN)
     675  		return LZMA_DATA_ERROR;
     676  
     677  	// The size of the Index field must not exceed the maximum value
     678  	// that can be stored in the Backward Size field.
     679  	if (index_size(i->record_count + 1,
     680  			i->index_list_size + index_list_size_add)
     681  			> LZMA_BACKWARD_SIZE_MAX)
     682  		return LZMA_DATA_ERROR;
     683  
     684  	if (g != NULL && g->last + 1 < g->allocated) {
     685  		// There is space in the last group at least for one Record.
     686  		++g->last;
     687  	} else {
     688  		// We need to allocate a new group.
     689  		g = lzma_alloc(sizeof(index_group)
     690  				+ i->prealloc * sizeof(index_record),
     691  				allocator);
     692  		if (g == NULL)
     693  			return LZMA_MEM_ERROR;
     694  
     695  		g->last = 0;
     696  		g->allocated = i->prealloc;
     697  
     698  		// Reset prealloc so that if the application happens to
     699  		// add new Records, the allocation size will be sane.
     700  		i->prealloc = INDEX_GROUP_SIZE;
     701  
     702  		// Set the start offsets of this group.
     703  		g->node.uncompressed_base = uncompressed_base;
     704  		g->node.compressed_base = compressed_base;
     705  		g->number_base = s->record_count + 1;
     706  
     707  		// Add the new group to the Stream.
     708  		index_tree_append(&s->groups, &g->node);
     709  	}
     710  
     711  	// Add the new Record to the group.
     712  	g->records[g->last].uncompressed_sum
     713  			= uncompressed_base + uncompressed_size;
     714  	g->records[g->last].unpadded_sum
     715  			= compressed_base + unpadded_size;
     716  
     717  	// Update the totals.
     718  	++s->record_count;
     719  	s->index_list_size += index_list_size_add;
     720  
     721  	i->total_size += vli_ceil4(unpadded_size);
     722  	i->uncompressed_size += uncompressed_size;
     723  	++i->record_count;
     724  	i->index_list_size += index_list_size_add;
     725  
     726  	return LZMA_OK;
     727  }
     728  
     729  
     730  /// Structure to pass info to index_cat_helper()
     731  typedef struct {
     732  	/// Uncompressed size of the destination
     733  	lzma_vli uncompressed_size;
     734  
     735  	/// Compressed file size of the destination
     736  	lzma_vli file_size;
     737  
     738  	/// Same as above but for Block numbers
     739  	lzma_vli block_number_add;
     740  
     741  	/// Number of Streams that were in the destination index before we
     742  	/// started appending new Streams from the source index. This is
     743  	/// used to fix the Stream numbering.
     744  	uint32_t stream_number_add;
     745  
     746  	/// Destination index' Stream tree
     747  	index_tree *streams;
     748  
     749  } index_cat_info;
     750  
     751  
     752  /// Add the Stream nodes from the source index to dest using recursion.
     753  /// Simplest iterative traversal of the source tree wouldn't work, because
     754  /// we update the pointers in nodes when moving them to the destination tree.
     755  static void
     756  index_cat_helper(const index_cat_info *info, index_stream *this)
     757  {
     758  	index_stream *left = (index_stream *)(this->node.left);
     759  	index_stream *right = (index_stream *)(this->node.right);
     760  
     761  	if (left != NULL)
     762  		index_cat_helper(info, left);
     763  
     764  	this->node.uncompressed_base += info->uncompressed_size;
     765  	this->node.compressed_base += info->file_size;
     766  	this->number += info->stream_number_add;
     767  	this->block_number_base += info->block_number_add;
     768  	index_tree_append(info->streams, &this->node);
     769  
     770  	if (right != NULL)
     771  		index_cat_helper(info, right);
     772  
     773  	return;
     774  }
     775  
     776  
     777  extern LZMA_API(lzma_ret)
     778  lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
     779  		const lzma_allocator *allocator)
     780  {
     781  	if (dest == NULL || src == NULL)
     782  		return LZMA_PROG_ERROR;
     783  
     784  	const lzma_vli dest_file_size = lzma_index_file_size(dest);
     785  
     786  	// Check that we don't exceed the file size limits.
     787  	if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
     788  			|| dest->uncompressed_size + src->uncompressed_size
     789  				> LZMA_VLI_MAX)
     790  		return LZMA_DATA_ERROR;
     791  
     792  	// Check that the encoded size of the combined lzma_indexes stays
     793  	// within limits. In theory, this should be done only if we know
     794  	// that the user plans to actually combine the Streams and thus
     795  	// construct a single Index (probably rare). However, exceeding
     796  	// this limit is quite theoretical, so we do this check always
     797  	// to simplify things elsewhere.
     798  	{
     799  		const lzma_vli dest_size = index_size_unpadded(
     800  				dest->record_count, dest->index_list_size);
     801  		const lzma_vli src_size = index_size_unpadded(
     802  				src->record_count, src->index_list_size);
     803  		if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
     804  			return LZMA_DATA_ERROR;
     805  	}
     806  
     807  	// Optimize the last group to minimize memory usage. Allocation has
     808  	// to be done before modifying dest or src.
     809  	{
     810  		index_stream *s = (index_stream *)(dest->streams.rightmost);
     811  		index_group *g = (index_group *)(s->groups.rightmost);
     812  		if (g != NULL && g->last + 1 < g->allocated) {
     813  			assert(g->node.left == NULL);
     814  			assert(g->node.right == NULL);
     815  
     816  			index_group *newg = lzma_alloc(sizeof(index_group)
     817  					+ (g->last + 1)
     818  					* sizeof(index_record),
     819  					allocator);
     820  			if (newg == NULL)
     821  				return LZMA_MEM_ERROR;
     822  
     823  			newg->node = g->node;
     824  			newg->allocated = g->last + 1;
     825  			newg->last = g->last;
     826  			newg->number_base = g->number_base;
     827  
     828  			memcpy(newg->records, g->records, newg->allocated
     829  					* sizeof(index_record));
     830  
     831  			if (g->node.parent != NULL) {
     832  				assert(g->node.parent->right == &g->node);
     833  				g->node.parent->right = &newg->node;
     834  			}
     835  
     836  			if (s->groups.leftmost == &g->node) {
     837  				assert(s->groups.root == &g->node);
     838  				s->groups.leftmost = &newg->node;
     839  				s->groups.root = &newg->node;
     840  			}
     841  
     842  			assert(s->groups.rightmost == &g->node);
     843  			s->groups.rightmost = &newg->node;
     844  
     845  			lzma_free(g, allocator);
     846  
     847  			// NOTE: newg isn't leaked here because
     848  			// newg == (void *)&newg->node.
     849  		}
     850  	}
     851  
     852  	// dest->checks includes the check types of all except the last Stream
     853  	// in dest. Set the bit for the check type of the last Stream now so
     854  	// that it won't get lost when Stream(s) from src are appended to dest.
     855  	dest->checks = lzma_index_checks(dest);
     856  
     857  	// Add all the Streams from src to dest. Update the base offsets
     858  	// of each Stream from src.
     859  	const index_cat_info info = {
     860  		.uncompressed_size = dest->uncompressed_size,
     861  		.file_size = dest_file_size,
     862  		.stream_number_add = dest->streams.count,
     863  		.block_number_add = dest->record_count,
     864  		.streams = &dest->streams,
     865  	};
     866  	index_cat_helper(&info, (index_stream *)(src->streams.root));
     867  
     868  	// Update info about all the combined Streams.
     869  	dest->uncompressed_size += src->uncompressed_size;
     870  	dest->total_size += src->total_size;
     871  	dest->record_count += src->record_count;
     872  	dest->index_list_size += src->index_list_size;
     873  	dest->checks |= src->checks;
     874  
     875  	// There's nothing else left in src than the base structure.
     876  	lzma_free(src, allocator);
     877  
     878  	return LZMA_OK;
     879  }
     880  
     881  
     882  /// Duplicate an index_stream.
     883  static index_stream *
     884  index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
     885  {
     886  	// Catch a somewhat theoretical integer overflow.
     887  	if (src->record_count > PREALLOC_MAX)
     888  		return NULL;
     889  
     890  	// Allocate and initialize a new Stream.
     891  	index_stream *dest = index_stream_init(src->node.compressed_base,
     892  			src->node.uncompressed_base, src->number,
     893  			src->block_number_base, allocator);
     894  	if (dest == NULL)
     895  		return NULL;
     896  
     897  	// Copy the overall information.
     898  	dest->record_count = src->record_count;
     899  	dest->index_list_size = src->index_list_size;
     900  	dest->stream_flags = src->stream_flags;
     901  	dest->stream_padding = src->stream_padding;
     902  
     903  	// Return if there are no groups to duplicate.
     904  	if (src->groups.leftmost == NULL)
     905  		return dest;
     906  
     907  	// Allocate memory for the Records. We put all the Records into
     908  	// a single group. It's simplest and also tends to make
     909  	// lzma_index_locate() a little bit faster with very big Indexes.
     910  	index_group *destg = lzma_alloc(sizeof(index_group)
     911  			+ src->record_count * sizeof(index_record),
     912  			allocator);
     913  	if (destg == NULL) {
     914  		index_stream_end(dest, allocator);
     915  		return NULL;
     916  	}
     917  
     918  	// Initialize destg.
     919  	destg->node.uncompressed_base = 0;
     920  	destg->node.compressed_base = 0;
     921  	destg->number_base = 1;
     922  	destg->allocated = src->record_count;
     923  	destg->last = src->record_count - 1;
     924  
     925  	// Go through all the groups in src and copy the Records into destg.
     926  	const index_group *srcg = (const index_group *)(src->groups.leftmost);
     927  	size_t i = 0;
     928  	do {
     929  		memcpy(destg->records + i, srcg->records,
     930  				(srcg->last + 1) * sizeof(index_record));
     931  		i += srcg->last + 1;
     932  		srcg = index_tree_next(&srcg->node);
     933  	} while (srcg != NULL);
     934  
     935  	assert(i == destg->allocated);
     936  
     937  	// Add the group to the new Stream.
     938  	index_tree_append(&dest->groups, &destg->node);
     939  
     940  	return dest;
     941  }
     942  
     943  
     944  extern LZMA_API(lzma_index *)
     945  lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
     946  {
     947  	// Allocate the base structure (no initial Stream).
     948  	lzma_index *dest = index_init_plain(allocator);
     949  	if (dest == NULL)
     950  		return NULL;
     951  
     952  	// Copy the totals.
     953  	dest->uncompressed_size = src->uncompressed_size;
     954  	dest->total_size = src->total_size;
     955  	dest->record_count = src->record_count;
     956  	dest->index_list_size = src->index_list_size;
     957  
     958  	// Copy the Streams and the groups in them.
     959  	const index_stream *srcstream
     960  			= (const index_stream *)(src->streams.leftmost);
     961  	do {
     962  		index_stream *deststream = index_dup_stream(
     963  				srcstream, allocator);
     964  		if (deststream == NULL) {
     965  			lzma_index_end(dest, allocator);
     966  			return NULL;
     967  		}
     968  
     969  		index_tree_append(&dest->streams, &deststream->node);
     970  
     971  		srcstream = index_tree_next(&srcstream->node);
     972  	} while (srcstream != NULL);
     973  
     974  	return dest;
     975  }
     976  
     977  
     978  /// Indexing for lzma_index_iter.internal[]
     979  enum {
     980  	ITER_INDEX,
     981  	ITER_STREAM,
     982  	ITER_GROUP,
     983  	ITER_RECORD,
     984  	ITER_METHOD,
     985  };
     986  
     987  
     988  /// Values for lzma_index_iter.internal[ITER_METHOD].s
     989  enum {
     990  	ITER_METHOD_NORMAL,
     991  	ITER_METHOD_NEXT,
     992  	ITER_METHOD_LEFTMOST,
     993  };
     994  
     995  
     996  static void
     997  iter_set_info(lzma_index_iter *iter)
     998  {
     999  	const lzma_index *i = iter->internal[ITER_INDEX].p;
    1000  	const index_stream *stream = iter->internal[ITER_STREAM].p;
    1001  	const index_group *group = iter->internal[ITER_GROUP].p;
    1002  	const size_t record = iter->internal[ITER_RECORD].s;
    1003  
    1004  	// lzma_index_iter.internal must not contain a pointer to the last
    1005  	// group in the index, because that may be reallocated by
    1006  	// lzma_index_cat().
    1007  	if (group == NULL) {
    1008  		// There are no groups.
    1009  		assert(stream->groups.root == NULL);
    1010  		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
    1011  
    1012  	} else if (i->streams.rightmost != &stream->node
    1013  			|| stream->groups.rightmost != &group->node) {
    1014  		// The group is not not the last group in the index.
    1015  		iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
    1016  
    1017  	} else if (stream->groups.leftmost != &group->node) {
    1018  		// The group isn't the only group in the Stream, thus we
    1019  		// know that it must have a parent group i.e. it's not
    1020  		// the root node.
    1021  		assert(stream->groups.root != &group->node);
    1022  		assert(group->node.parent->right == &group->node);
    1023  		iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
    1024  		iter->internal[ITER_GROUP].p = group->node.parent;
    1025  
    1026  	} else {
    1027  		// The Stream has only one group.
    1028  		assert(stream->groups.root == &group->node);
    1029  		assert(group->node.parent == NULL);
    1030  		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
    1031  		iter->internal[ITER_GROUP].p = NULL;
    1032  	}
    1033  
    1034  	// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
    1035  	// internally.
    1036  	iter->stream.number = stream->number;
    1037  	iter->stream.block_count = stream->record_count;
    1038  	iter->stream.compressed_offset = stream->node.compressed_base;
    1039  	iter->stream.uncompressed_offset = stream->node.uncompressed_base;
    1040  
    1041  	// iter->stream.flags will be NULL if the Stream Flags haven't been
    1042  	// set with lzma_index_stream_flags().
    1043  	iter->stream.flags = stream->stream_flags.version == UINT32_MAX
    1044  			? NULL : &stream->stream_flags;
    1045  	iter->stream.padding = stream->stream_padding;
    1046  
    1047  	if (stream->groups.rightmost == NULL) {
    1048  		// Stream has no Blocks.
    1049  		iter->stream.compressed_size = index_size(0, 0)
    1050  				+ 2 * LZMA_STREAM_HEADER_SIZE;
    1051  		iter->stream.uncompressed_size = 0;
    1052  	} else {
    1053  		const index_group *g = (const index_group *)(
    1054  				stream->groups.rightmost);
    1055  
    1056  		// Stream Header + Stream Footer + Index + Blocks
    1057  		iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
    1058  				+ index_size(stream->record_count,
    1059  					stream->index_list_size)
    1060  				+ vli_ceil4(g->records[g->last].unpadded_sum);
    1061  		iter->stream.uncompressed_size
    1062  				= g->records[g->last].uncompressed_sum;
    1063  	}
    1064  
    1065  	if (group != NULL) {
    1066  		iter->block.number_in_stream = group->number_base + record;
    1067  		iter->block.number_in_file = iter->block.number_in_stream
    1068  				+ stream->block_number_base;
    1069  
    1070  		iter->block.compressed_stream_offset
    1071  				= record == 0 ? group->node.compressed_base
    1072  				: vli_ceil4(group->records[
    1073  					record - 1].unpadded_sum);
    1074  		iter->block.uncompressed_stream_offset
    1075  				= record == 0 ? group->node.uncompressed_base
    1076  				: group->records[record - 1].uncompressed_sum;
    1077  
    1078  		iter->block.uncompressed_size
    1079  				= group->records[record].uncompressed_sum
    1080  				- iter->block.uncompressed_stream_offset;
    1081  		iter->block.unpadded_size
    1082  				= group->records[record].unpadded_sum
    1083  				- iter->block.compressed_stream_offset;
    1084  		iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
    1085  
    1086  		iter->block.compressed_stream_offset
    1087  				+= LZMA_STREAM_HEADER_SIZE;
    1088  
    1089  		iter->block.compressed_file_offset
    1090  				= iter->block.compressed_stream_offset
    1091  				+ iter->stream.compressed_offset;
    1092  		iter->block.uncompressed_file_offset
    1093  				= iter->block.uncompressed_stream_offset
    1094  				+ iter->stream.uncompressed_offset;
    1095  	}
    1096  
    1097  	return;
    1098  }
    1099  
    1100  
    1101  extern LZMA_API(void)
    1102  lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
    1103  {
    1104  	iter->internal[ITER_INDEX].p = i;
    1105  	lzma_index_iter_rewind(iter);
    1106  	return;
    1107  }
    1108  
    1109  
    1110  extern LZMA_API(void)
    1111  lzma_index_iter_rewind(lzma_index_iter *iter)
    1112  {
    1113  	iter->internal[ITER_STREAM].p = NULL;
    1114  	iter->internal[ITER_GROUP].p = NULL;
    1115  	iter->internal[ITER_RECORD].s = 0;
    1116  	iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
    1117  	return;
    1118  }
    1119  
    1120  
    1121  extern LZMA_API(lzma_bool)
    1122  lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
    1123  {
    1124  	// Catch unsupported mode values.
    1125  	if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
    1126  		return true;
    1127  
    1128  	const lzma_index *i = iter->internal[ITER_INDEX].p;
    1129  	const index_stream *stream = iter->internal[ITER_STREAM].p;
    1130  	const index_group *group = NULL;
    1131  	size_t record = iter->internal[ITER_RECORD].s;
    1132  
    1133  	// If we are being asked for the next Stream, leave group to NULL
    1134  	// so that the rest of the this function thinks that this Stream
    1135  	// has no groups and will thus go to the next Stream.
    1136  	if (mode != LZMA_INDEX_ITER_STREAM) {
    1137  		// Get the pointer to the current group. See iter_set_inf()
    1138  		// for explanation.
    1139  		switch (iter->internal[ITER_METHOD].s) {
    1140  		case ITER_METHOD_NORMAL:
    1141  			group = iter->internal[ITER_GROUP].p;
    1142  			break;
    1143  
    1144  		case ITER_METHOD_NEXT:
    1145  			group = index_tree_next(iter->internal[ITER_GROUP].p);
    1146  			break;
    1147  
    1148  		case ITER_METHOD_LEFTMOST:
    1149  			group = (const index_group *)(
    1150  					stream->groups.leftmost);
    1151  			break;
    1152  		}
    1153  	}
    1154  
    1155  again:
    1156  	if (stream == NULL) {
    1157  		// We at the beginning of the lzma_index.
    1158  		// Locate the first Stream.
    1159  		stream = (const index_stream *)(i->streams.leftmost);
    1160  		if (mode >= LZMA_INDEX_ITER_BLOCK) {
    1161  			// Since we are being asked to return information
    1162  			// about the first a Block, skip Streams that have
    1163  			// no Blocks.
    1164  			while (stream->groups.leftmost == NULL) {
    1165  				stream = index_tree_next(&stream->node);
    1166  				if (stream == NULL)
    1167  					return true;
    1168  			}
    1169  		}
    1170  
    1171  		// Start from the first Record in the Stream.
    1172  		group = (const index_group *)(stream->groups.leftmost);
    1173  		record = 0;
    1174  
    1175  	} else if (group != NULL && record < group->last) {
    1176  		// The next Record is in the same group.
    1177  		++record;
    1178  
    1179  	} else {
    1180  		// This group has no more Records or this Stream has
    1181  		// no Blocks at all.
    1182  		record = 0;
    1183  
    1184  		// If group is not NULL, this Stream has at least one Block
    1185  		// and thus at least one group. Find the next group.
    1186  		if (group != NULL)
    1187  			group = index_tree_next(&group->node);
    1188  
    1189  		if (group == NULL) {
    1190  			// This Stream has no more Records. Find the next
    1191  			// Stream. If we are being asked to return information
    1192  			// about a Block, we skip empty Streams.
    1193  			do {
    1194  				stream = index_tree_next(&stream->node);
    1195  				if (stream == NULL)
    1196  					return true;
    1197  			} while (mode >= LZMA_INDEX_ITER_BLOCK
    1198  					&& stream->groups.leftmost == NULL);
    1199  
    1200  			group = (const index_group *)(
    1201  					stream->groups.leftmost);
    1202  		}
    1203  	}
    1204  
    1205  	if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
    1206  		// We need to look for the next Block again if this Block
    1207  		// is empty.
    1208  		if (record == 0) {
    1209  			if (group->node.uncompressed_base
    1210  					== group->records[0].uncompressed_sum)
    1211  				goto again;
    1212  		} else if (group->records[record - 1].uncompressed_sum
    1213  				== group->records[record].uncompressed_sum) {
    1214  			goto again;
    1215  		}
    1216  	}
    1217  
    1218  	iter->internal[ITER_STREAM].p = stream;
    1219  	iter->internal[ITER_GROUP].p = group;
    1220  	iter->internal[ITER_RECORD].s = record;
    1221  
    1222  	iter_set_info(iter);
    1223  
    1224  	return false;
    1225  }
    1226  
    1227  
    1228  extern LZMA_API(lzma_bool)
    1229  lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
    1230  {
    1231  	const lzma_index *i = iter->internal[ITER_INDEX].p;
    1232  
    1233  	// If the target is past the end of the file, return immediately.
    1234  	if (i->uncompressed_size <= target)
    1235  		return true;
    1236  
    1237  	// Locate the Stream containing the target offset.
    1238  	const index_stream *stream = index_tree_locate(&i->streams, target);
    1239  	assert(stream != NULL);
    1240  	target -= stream->node.uncompressed_base;
    1241  
    1242  	// Locate the group containing the target offset.
    1243  	const index_group *group = index_tree_locate(&stream->groups, target);
    1244  	assert(group != NULL);
    1245  
    1246  	// Use binary search to locate the exact Record. It is the first
    1247  	// Record whose uncompressed_sum is greater than target.
    1248  	// This is because we want the rightmost Record that fulfills the
    1249  	// search criterion. It is possible that there are empty Blocks;
    1250  	// we don't want to return them.
    1251  	size_t left = 0;
    1252  	size_t right = group->last;
    1253  
    1254  	while (left < right) {
    1255  		const size_t pos = left + (right - left) / 2;
    1256  		if (group->records[pos].uncompressed_sum <= target)
    1257  			left = pos + 1;
    1258  		else
    1259  			right = pos;
    1260  	}
    1261  
    1262  	iter->internal[ITER_STREAM].p = stream;
    1263  	iter->internal[ITER_GROUP].p = group;
    1264  	iter->internal[ITER_RECORD].s = left;
    1265  
    1266  	iter_set_info(iter);
    1267  
    1268  	return false;
    1269  }