(root)/
xz-5.4.5/
src/
liblzma/
check/
sha256.c
       1  ///////////////////////////////////////////////////////////////////////////////
       2  //
       3  /// \file       sha256.c
       4  /// \brief      SHA-256
       5  ///
       6  /// \todo       Crypto++ has x86 ASM optimizations. They use SSE so if they
       7  ///             are imported to liblzma, SSE instructions need to be used
       8  ///             conditionally to keep the code working on older boxes.
       9  //
      10  //  This code is based on the code found from 7-Zip, which has a modified
      11  //  version of the SHA-256 found from Crypto++ <https://www.cryptopp.com/>.
      12  //  The code was modified a little to fit into liblzma.
      13  //
      14  //  Authors:    Kevin Springle
      15  //              Wei Dai
      16  //              Igor Pavlov
      17  //              Lasse Collin
      18  //
      19  //  This file has been put into the public domain.
      20  //  You can do whatever you want with this file.
      21  //
      22  ///////////////////////////////////////////////////////////////////////////////
      23  
      24  #include "check.h"
      25  
      26  // Rotate a uint32_t. GCC can optimize this to a rotate instruction
      27  // at least on x86.
      28  static inline uint32_t
      29  rotr_32(uint32_t num, unsigned amount)
      30  {
      31          return (num >> amount) | (num << (32 - amount));
      32  }
      33  
      34  #define blk0(i) (W[i] = conv32be(data[i]))
      35  #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
      36  		+ s0(W[(i - 15) & 15]))
      37  
      38  #define Ch(x, y, z) (z ^ (x & (y ^ z)))
      39  #define Maj(x, y, z) ((x & (y ^ z)) + (y & z))
      40  
      41  #define a(i) T[(0 - i) & 7]
      42  #define b(i) T[(1 - i) & 7]
      43  #define c(i) T[(2 - i) & 7]
      44  #define d(i) T[(3 - i) & 7]
      45  #define e(i) T[(4 - i) & 7]
      46  #define f(i) T[(5 - i) & 7]
      47  #define g(i) T[(6 - i) & 7]
      48  #define h(i) T[(7 - i) & 7]
      49  
      50  #define R(i, j, blk) \
      51  	h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \
      52  	d(i) += h(i); \
      53  	h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
      54  #define R0(i) R(i, 0, blk0(i))
      55  #define R2(i) R(i, j, blk2(i))
      56  
      57  #define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2)
      58  #define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6)
      59  #define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3))
      60  #define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10))
      61  
      62  
      63  static const uint32_t SHA256_K[64] = {
      64  	0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
      65  	0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
      66  	0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
      67  	0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
      68  	0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
      69  	0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
      70  	0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
      71  	0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
      72  	0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
      73  	0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
      74  	0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
      75  	0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
      76  	0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
      77  	0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
      78  	0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
      79  	0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
      80  };
      81  
      82  
      83  static void
      84  transform(uint32_t state[8], const uint32_t data[16])
      85  {
      86  	uint32_t W[16];
      87  	uint32_t T[8];
      88  
      89  	// Copy state[] to working vars.
      90  	memcpy(T, state, sizeof(T));
      91  
      92  	// The first 16 operations unrolled
      93  	R0( 0); R0( 1); R0( 2); R0( 3);
      94  	R0( 4); R0( 5); R0( 6); R0( 7);
      95  	R0( 8); R0( 9); R0(10); R0(11);
      96  	R0(12); R0(13); R0(14); R0(15);
      97  
      98  	// The remaining 48 operations partially unrolled
      99  	for (unsigned int j = 16; j < 64; j += 16) {
     100  		R2( 0); R2( 1); R2( 2); R2( 3);
     101  		R2( 4); R2( 5); R2( 6); R2( 7);
     102  		R2( 8); R2( 9); R2(10); R2(11);
     103  		R2(12); R2(13); R2(14); R2(15);
     104  	}
     105  
     106  	// Add the working vars back into state[].
     107  	state[0] += a(0);
     108  	state[1] += b(0);
     109  	state[2] += c(0);
     110  	state[3] += d(0);
     111  	state[4] += e(0);
     112  	state[5] += f(0);
     113  	state[6] += g(0);
     114  	state[7] += h(0);
     115  }
     116  
     117  
     118  static void
     119  process(lzma_check_state *check)
     120  {
     121  	transform(check->state.sha256.state, check->buffer.u32);
     122  	return;
     123  }
     124  
     125  
     126  extern void
     127  lzma_sha256_init(lzma_check_state *check)
     128  {
     129  	static const uint32_t s[8] = {
     130  		0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
     131  		0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
     132  	};
     133  
     134  	memcpy(check->state.sha256.state, s, sizeof(s));
     135  	check->state.sha256.size = 0;
     136  
     137  	return;
     138  }
     139  
     140  
     141  extern void
     142  lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
     143  {
     144  	// Copy the input data into a properly aligned temporary buffer.
     145  	// This way we can be called with arbitrarily sized buffers
     146  	// (no need to be multiple of 64 bytes), and the code works also
     147  	// on architectures that don't allow unaligned memory access.
     148  	while (size > 0) {
     149  		const size_t copy_start = check->state.sha256.size & 0x3F;
     150  		size_t copy_size = 64 - copy_start;
     151  		if (copy_size > size)
     152  			copy_size = size;
     153  
     154  		memcpy(check->buffer.u8 + copy_start, buf, copy_size);
     155  
     156  		buf += copy_size;
     157  		size -= copy_size;
     158  		check->state.sha256.size += copy_size;
     159  
     160  		if ((check->state.sha256.size & 0x3F) == 0)
     161  			process(check);
     162  	}
     163  
     164  	return;
     165  }
     166  
     167  
     168  extern void
     169  lzma_sha256_finish(lzma_check_state *check)
     170  {
     171  	// Add padding as described in RFC 3174 (it describes SHA-1 but
     172  	// the same padding style is used for SHA-256 too).
     173  	size_t pos = check->state.sha256.size & 0x3F;
     174  	check->buffer.u8[pos++] = 0x80;
     175  
     176  	while (pos != 64 - 8) {
     177  		if (pos == 64) {
     178  			process(check);
     179  			pos = 0;
     180  		}
     181  
     182  		check->buffer.u8[pos++] = 0x00;
     183  	}
     184  
     185  	// Convert the message size from bytes to bits.
     186  	check->state.sha256.size *= 8;
     187  
     188  	check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
     189  
     190  	process(check);
     191  
     192  	for (size_t i = 0; i < 8; ++i)
     193  		check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
     194  
     195  	return;
     196  }